scholarly journals EMERGENT UNIVERSE WITH EXOTIC MATTER IN LOOP QUANTUM COSMOLOGY, DGP BRANE-WORLD AND KALUZA–KLEIN COSMOLOGY

2012 ◽  
Vol 27 (33) ◽  
pp. 1250189 ◽  
Author(s):  
PRABIR RUDRA

In this work we have investigated the emergent scenario of the Universe described by loop quantum cosmology model, DGP brane model and Kaluza–Klein cosmology. Scalar field along with barotropic fluid as normal matter is considered as the matter content of the Universe. In loop quantum cosmology it is found that the emergent scenario is realized with the imposition of some conditions on the value of the density of normal matter in case of normal and phantom scalar field. This is a surprising result indeed considering the fact that scalar field is the dominating matter component! In case of tachyonic field, emergent scenario is realized with some constraints on the value of ρ1 for both normal and phantom tachyon. In case of DGP brane-world realization of an emergent scenario is possible almost unconditionally for normal and phantom fields. Plots and table have been generated to testify this fact. In case of tachyonic field emergent scenario is realized with some constraints on [Formula: see text]. In Kaluza–Klein cosmology emergent scenario is possible only for a closed Universe in case of normal and phantom scalar field. For a tachyonic field, realization of emergent Universe is possible for all models (closed, open and flat).

2015 ◽  
Vol 24 (08) ◽  
pp. 1550062 ◽  
Author(s):  
Yaser Tavakoli ◽  
Júlio C. Fabris

We consider an isotropic and homogeneous universe in loop quantum cosmology (LQC). We assume that the matter content of the universe is dominated by dust matter in early time and a phantom matter at late time which constitutes the dark energy component. The quantum gravity modifications to the Friedmann equation in this model indicate that the classical big bang singularity and the future big rip singularity are resolved and are replaced by quantum bounce. It turns out that the big bounce and recollapse in the herein model contribute to a cyclic scenario for the universe. We then study the quantum theory of a massive, nonminimally coupled scalar field undergoing cosmological evolution from primordial bounce towards the late time bounce. In particular, we solve the Klein–Gordon equation for the scalar field in the primordial and late time regions, in order to investigate particle production phenomena at late time. By computing the energy density of created particles at late time, we show that this density is negligible in comparison to the quantum background density at Planck era. This indicates that the effects of quantum particle production do not influence the future bounce.


2020 ◽  
Vol 29 (06) ◽  
pp. 2050039
Author(s):  
Luis Rey Díaz-Barrón ◽  
Abraham Espinoza-García ◽  
S. Pérez-Payán ◽  
J. Socorro

In this work, we construct a noncommutative version of the Friedmann equations in the framework of effective loop quantum cosmology, extending and applying the ideas presented in a previous proposal by some of the authors. The model under consideration is a flat FRW spacetime with a free scalar field. First, noncommutativity in the momentum sector is introduced. We establish the noncommutative equations of motion and obtain the corresponding exact solutions. Such solutions indicate that the bounce is preserved, in particular, the energy density is the same as in the standard LQC. We also construct an extension of the modified Friedmann equations arising in effective LQC which incorporates corrections due to noncommutativity, and argue that an effective potential is induced. This, in turn, leads us to investigate the possibility of an inflationary era. Finally, we obtain the Friedmann and the Raychaudhuri equations when implementing noncommutativity in the configuration sector. In this case, no effective potential is induced.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 186
Author(s):  
Mercedes Martín-Benito ◽  
Rita B. Neves

We provide an analytical solution to the quantum dynamics of a flat Friedmann-Lemaître- Robertson-Walker model with a massless scalar field in the presence of a small and positive cosmological constant, in the context of Loop Quantum Cosmology. We use a perturbative treatment with respect to the model without a cosmological constant, which is exactly solvable. Our solution is approximate, but it is precisely valid at the high curvature regime where quantum gravity corrections are important. We compute explicitly the evolution of the expectation value of the volume. For semiclassical states characterized by a Gaussian spectral profile, the introduction of a positive cosmological constant displaces the bounce of the solvable model to lower volumes and to higher values of the scalar field. These displacements are state dependent, and in particular, they depend on the peak of the Gaussian profile, which measures the momentum of the scalar field. Moreover, for those semiclassical states, the bounce remains symmetric, as in the vanishing cosmological constant case. However, we show that the behavior of the volume is more intricate for generic states, leading in general to a non-symmetric bounce.


1993 ◽  
Vol 02 (02) ◽  
pp. 221-247 ◽  
Author(s):  
E.I. GUENDELMAN ◽  
A.B. KAGANOVICH

We consider 1+D-dimensional, toroidally compact Kaluza-Klein theories. In the context of the minisuperspace approach of quantum cosmology, we solve the Wheeler-DeWitt equation in the presence of a negative cosmological constant and dust. Then, it is found that the quantum effects stabilize the volume of the Universe, so that there can be an avoidance of the cosmological singularity. Although cosmic time does not appear explicitly in the Wheeler-DeWitt equation, we find that a cosmic time dependence appears for the expectation values of certain variables. This result is obtained when proper care of some subtle points concerning the definition of averages in this model is taken. The stabilization of the volume, when there is anisotropy in the evolution of the Universe (which turns out to be quantized), is consistent with another effect we find: the existence of a “quantum inflationary phase” for some dimensions and simultaneously the existence of a “quantum deflationary contraction” for the rest.


2019 ◽  
Vol 28 (15) ◽  
pp. 1950170
Author(s):  
Kui Xiao

The evolutionary pictures for phantom field in loop quantum cosmology are discussed in this paper. Comparing the dynamical behaviors of the phantom field with one of the canonical scalar fields in loop quantum cosmology scenario, we found that the [Formula: see text] phase trajectories are the same, but the [Formula: see text] phase-spaces are very different, and the phantom field with considering potentials can drive neither super inflation nor slow-roll inflation in loop quantum cosmology (LQC) scenario. While the universe is filled with multiple dark fluids, to ensure that the condition [Formula: see text] does not violate, the energy density of dark matter [Formula: see text] and the equation-of-state of phantom field [Formula: see text] should satisfy the condition [Formula: see text] at the bounce point. If this constraint condition holds, the universe can enter an inflationary stage, and it is possible to unify the description of phantom field, dark matter and inflation. We introduced a toy model which has the same form of the general Chaplygin gas to unify the dark energy, dark matter and slow-roll inflation, and the slow-roll inflation of the toy model has also been discussed.


1992 ◽  
Vol 9 (2) ◽  
pp. L27-L32 ◽  
Author(s):  
A O Barvinsky ◽  
A Y Kamenshchik ◽  
I P Karmazin ◽  
I V Mishakov

2009 ◽  
Vol 24 (15) ◽  
pp. 1237-1246 ◽  
Author(s):  
HUA-HUI XIONG ◽  
TAOTAO QIU ◽  
YI-FU CAI ◽  
XINMIN ZHANG

In this paper, we study the possibility of model building of cyclic universe with Quintom matter in the framework of Loop Quantum Cosmology. After a general demonstration, we provide two examples, one with double-fluid and another double-scalar field, to show how such a scenario is obtained. Analytical and numerical calculations are both presented in the paper.


2016 ◽  
Vol 94 (7) ◽  
pp. 659-670 ◽  
Author(s):  
B. Pourhassan

The universe evolution from inflation to late-time acceleration is investigated in a unified way, using a two-component fluid constituted from extended Chaplygin gas alongside a phantom scalar field. We extract solutions for the various cosmological eras, focusing on the behavior of the scale factor, the various density parameters and the equation-of-state parameter. Furthermore, we extract and discuss bouncing solutions. Finally, we examine the perturbations of the model, ensuring their stability and extracting the predictions for the tensor-to-scalar ratio.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Li-Fang Li ◽  
Jian-Yang Zhu

Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.


Sign in / Sign up

Export Citation Format

Share Document