universe evolution
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 28)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Jae-Kwang Hwang

Space-time evolution of our universe is explained by using the 3-dimensional quantized space model (TQSM) based on the 4-dimensional (4-D) Euclidean space. The energy (E = cDtDV), charges and energy density (|q| = r = cDt) and absolute time (ct) are newly defined based on the 4-D Euclidean space. The photon flat space with the constant energy density of r = cDtq is proposed as the dark energy (DE). The dark energy is separated into the n DE and photon DE which create the new photon spaces with the constant energy density of r = cDtq. The v DE is from the n pair production by the CPT symmetry and the photon DE is from the photon space pair production by the T symmetry. The vacuum energy crisis and Hubble’s constant puzzle are explained by the photon space with the n DE and photon DE. The big bang and inflation of the primary black hole is connected to the accelerated space expansion and big collapse of the photon space through the universe evolution. The big bang from the nothing is the pair production of the matter universe with the positive energy and the partner anti-matter universe with the negative energy from the CPT symmetry. Our universe is the matter universe with the negative charges of electric charge (EC), lepton charge (LC) and color charge (CC). This first universe is made of dark matter -, lepton -, and quark - primary black holes with the huge negative charges which cause the Coulomb repulsive forces much bigger than the gravitational forces. The huge Coulomb forces induce the inflation of the primary black holes, that decay to the super-massive black holes and particles.


Author(s):  
Ammar Kasem ◽  
Shaaban Said Khalil

Abstract We extend the treatment of quantum cosmology to a manifold with torsion. We adopt a model of Einstein-Cartan-Sciama-Kibble compatible with the cosmological principle. The universe wavefunction is shown to be subject to a PT-symmetric Hamiltonian. With a vanishing energy-momentum tensor, the universe evolution in the semiclassical and classical regimes is shown to suggest a two-stage inflationary process induced by torsion.


2021 ◽  
Vol 59 (11) ◽  
pp. 1106-1112
Author(s):  
L. A. Gribov ◽  
V. I. Baranov ◽  
I. V. Mikhailov

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Emmanuel N. Saridakis ◽  
Spyros Basilakos

AbstractWe investigate the validity of the generalized second law of thermodynamics, applying Barrow entropy for the horizon entropy. The former arises from the fact that the black-hole surface may be deformed due to quantum-gravitational effects, quantified by a new exponent $$\Delta $$ Δ . We calculate the entropy time-variation in a universe filled with the matter and dark energy fluids, as well as the corresponding quantity for the apparent horizon. We show that although in the case $$\Delta =0$$ Δ = 0 , which corresponds to usual entropy, the sum of the entropy enclosed by the apparent horizon plus the entropy of the horizon itself is always a non-decreasing function of time and thus the generalized second law of thermodynamics is valid, in the case of Barrow entropy this is not true anymore, and the generalized second law of thermodynamics may be violated, depending on the universe evolution. Hence, in order not to have violation, the deformation from standard Bekenstein–Hawking expression should be small as expected.


Author(s):  
Mohammed B. Al-Fadhli

The recent Planck Legacy release confirmed the existence of an enhanced lensing amplitude in the cosmic microwave background (CMB) power spectra, which endorses the positive curvature of the early Universe with a confidence level exceeding 99%. In this study, the pre-existing curvature is incorporated to extend the field equations where the derived wave function of the Universe is utilized to model Universe evolution with reference to the scale factor of the early Universe and its radius of curvature upon the emission of the CMB. The wave function reveals both positive and negative solutions, implying that matter and antimatter of early Universe plasma evolve in opposite directions as distinct Universe sides. The wave function indicates that a nascent hyperbolic expansion is followed by a first phase of decelerating expansion away from early plasma during the first 10 Gyr, and then, a second phase of accelerating expansion in reverse directions, whereby both Universe sides free-fall towards each other under gravitational acceleration. Simulations of the predicted conformal curvature evolution demonstrate the fast orbital speed of outer stars owing to the external fields exerted on galaxies as they travel through conformally curved space-time. Finally, the wave function predicts an eventual time-reversal phase comprising rapid spatial contraction that culminates in a Big Crunch, signalling a cyclic Universe. These findings reveal that early plasma could have separated and evolved into distinct sides that collectively and geometrically influencing the Universe evolution, physically explanting the effects attributed to dark matter and energy.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 117
Author(s):  
Zbigniew Haba

We study the pure and thermal states of quantized scalar and tensor perturbations in various epochs of Universe evolution. We calculate the density matrix of non-relativistic particles in an environment of these perturbations. We show that particle’s motion can be described by a stochastic equation with a noise coming from the cosmological environment. We investigate the squeezing of Gaussian wave packets in different epochs and its impact on the noise of quantized cosmological perturbations.


Author(s):  
Jae-Kwang Hwang

The origins of the stellar mass neutron black holes and supermassive dark matter black holes without the singularities are reported based on the 4-D Euclidean space. The neutron black holes with the mass of mBH = 5 – 15 msun are made by the 6-quark merged states (N6q) of two neutrons with the mass (m(N6q) = 10 m(n)) of 9.4 GeV/c2 that gives the black hole mass gap of mBH = 3 – 5 msun. Also, the supermassive black holes with the mass of mSMBH = 106 – 1011 msun are made by the merged 3-D states (J(B1B2B3)3 particles) of the dark matters. The supermassive black hole at the center of the Milky way galaxy has the mass of mSMBH = 4.1 106 msun that is consistent with mSMBH = 2.08 - 6.23 106 msun calculated from the 3-D states (J(B1B2B3)3 particles) of the dark matters with the mass of m(J) = 1.95 1015 eV/c2. In other words, this supports the existence of the B1, B2 and B3 dark matters with the proposed masses. The first dark matter black hole (primary black hole) was created at the big bang. This first dark matter black hole decayed to the supermassive dark matter black holes through the secondary dark matter black holes that are explained by the merged states of the J(B1B2B3)3 particles. The universe evolution is closely connected to the decaying process of the dark matter black holes since the big bang. The dark matter cloud states are proposed at the intermediate mass black hole range of mIMBH = 102 – 105 msun. This can explain why the dark matter black holes are not observed at the intermediate mass black hole range of mIMBH = 102 – 105 msun.


Author(s):  
Jae-Kwang Hwang

The origins of the stellar mass neutron black holes and supermassive dark matter black holes without the singularities are reported based on the 4-D Euclidean space. The neutron black holes with the mass of mBH = 5 – 15 msun are made by the 6-quark merged states (N6q) of two neutrons with the mass (m(N6q) = 10 m(n)) of 9.4 GeV/c2 that gives the black hole mass gap of mBH = 3 – 5 msun. Also, the supermassive black holes with the mass of mSMBH = 106 – 1011 msun are made by the merged 3-D states (J(B1B2B3)3 particles) of the dark matters. The supermassive black hole at the center of the Milky way galaxy has the mass of mSMBH = 4.1 106 msun that is consistent with mSMBH = 2.08 - 6.23 106 msun calculated from the 3-D states (J(B1B2B3)3 particles) of the dark matters with the mass of m(J) = 1.95 1015 eV/c2. In other words, this supports the existence of the B1, B2 and B3 dark matters with the proposed masses. The first dark matter black hole (primary black hole) was created at the big bang. This first dark matter black hole decayed to the supermassive dark matter black holes through the secondary dark matter black holes that are explained by the merged states of the J(B1B2B3)3 particles. The universe evolution is closely connected to the decaying process of the dark matter black holes since the big bang. The dark matter cloud states are proposed at the intermediate mass black hole range of mIMBH = 102 – 105 msun. This can explain why the dark matter black holes are not observed at the intermediate mass black hole range of mIMBH = 102 – 105 msun.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 313
Author(s):  
Polina Petriakova ◽  
Arkady Popov ◽  
Sergey Rubin

We study the universe evolution starting from the sub-Planckian scale to present times. The requirement for an exponential expansion of the space with the observed metric as a final stage leads to significant restrictions on the parameter values of a function f(R). An initial metric of the Universe is supposed to be maximally symmetric with the positive curvature.


2021 ◽  
pp. 2150052
Author(s):  
Qihong Huang ◽  
Ruanjing Zhang ◽  
Jun Chen ◽  
He Huang ◽  
Feiquan Tu

In this paper, we analyze the universe evolution and phase space behavior of the Umami Chaplygin model, where the Umami Chaplygin fluid replaces both a dark energy and a dark and baryonic matter. We find the Umami Chaplygin model can be stable against perturbations under some conditions and can be used to explain the late-time cosmic acceleration. The results of phase space analysis show that there exists a late-time accelerated expansion attractor with [Formula: see text], which indicates the Umami Chaplygin fluid can behave as a cosmological constant. Moreover, the Umami Chaplygin model can describe the expansion history of the universe. The evolutionary trajectories of the statefinder diagnostic pairs and the finite time future singularities are also discussed.


Sign in / Sign up

Export Citation Format

Share Document