scholarly journals Reactor neutrino experiments: θ13 and beyond

2014 ◽  
Vol 29 (16) ◽  
pp. 1430016 ◽  
Author(s):  
Xin Qian ◽  
Wei Wang

We review the current-generation short-baseline reactor neutrino experiments that have firmly established the third neutrino mixing angle θ13 to be nonzero. The relative large value of θ13 (around 9°) has opened many new and exciting opportunities for future neutrino experiments. Daya Bay experiment with the first measurement of [Formula: see text] is aiming for a precision measurement of this atmospheric mass-squared splitting with a comparable precision as [Formula: see text] from accelerator muon neutrino experiments. JUNO, a next-generation reactor neutrino experiment, is targeting to determine the neutrino mass hierarchy (MH) with medium baselines (~ 50 km). Beside these opportunities enabled by the large θ13, the current-generation (Daya Bay, Double Chooz, and RENO) and the next-generation (JUNO, RENO-50, and PROSPECT) reactor experiments, with their unprecedented statistics, are also leading the precision era of the three-flavor neutrino oscillation physics as well as constraining new physics beyond the neutrino Standard Model.

2013 ◽  
Vol 2013 ◽  
pp. 1-34 ◽  
Author(s):  
Soo-Bong Kim ◽  
Thierry Lasserre ◽  
Yifang Wang

We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angleθ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.


2013 ◽  
Vol 28 (31) ◽  
pp. 1350131 ◽  
Author(s):  
SRINU GOLLU ◽  
K. N. DEEPTHI ◽  
R. MOHANTA

The recent results from Daya Bay and RENO reactor neutrino experiments have firmly established that the smallest reactor mixing angle θ13 is nonvanishing at the 5 σ level, with a relatively large value, i.e. θ13 ≈ 9°. Using the fact that the neutrino mixing matrix can be represented as [Formula: see text], where Ul and Uν result from the diagonalization of the charged lepton and neutrino mass matrices and Pν is a diagonal matrix containing the Majorana phases and assuming the tri-bimaximal (TBM) form for Uν, we investigate the possibility of accounting for the large reactor mixing angle due to the corrections of the charged lepton mixing matrix. The form of Ul is assumed to be that of CKM mixing matrix of the quark sector. We find that with this modification it is possible to accommodate the large observed reactor mixing angle θ13. We also study the implications of such corrections on the other phenomenological observables.


2012 ◽  
Vol 27 (08) ◽  
pp. 1230010 ◽  
Author(s):  
C. MARIANI

In this document we will review the current status of reactor neutrino oscillation experiments and present their physics potentials for measuring the θ13 neutrino mixing angle. The neutrino mixing angle θ13 is currently a high-priority topic in the field of neutrino physics. There are currently three different reactor neutrino experiments, DOUBLE CHOOZ, DAYA BAY and RENO and a few accelerator neutrino experiments searching for neutrino oscillations induced by this angle. A description of the reactor experiments searching for a nonzero value of θ13 is given, along with a discussion of the sensitivities that these experiments can reach in the near future.


2019 ◽  
Vol 64 (7) ◽  
pp. 653
Author(s):  
V. Vorobel

The Daya Bay Reactor Neutrino Experiment was designed to measure Θ13, the smallest mixing angle in the three-neutrino mixing framework, with unprecedented precision. The experiment consists of eight identically designed detectors placed underground at different baselines from three pairs of nuclear reactors in South China. Since Dec. 2011, the experiment has been running stably for more than 7 years, and has collected the largest reactor antineutrino sample to date. Daya Bay greatly improved the precision on Θ13 and made an independent measurement of the effective mass splitting in the electron antineutrino disappearance channel. Daya Bay also performed a number of other precise measurements such as a high-statistics determination of the absolute reactor antineutrino flux and the spectrum evolution, as well as a search for the sterile neutrino mixing, among others. The most recent results from Daya Bay are discussed in this paper, as well as the current status and future prospects of the experiment.


2014 ◽  
Vol 31 ◽  
pp. 1460312 ◽  
Author(s):  
Masheng Yang ◽  
Yaping Cheng ◽  

The Daya Bay Reactor Neutrino Experiment has measured a non-zero value of the neutrino mixing angle θ13 with a significance of 7.7 standard deviations by a rate-only analysis.1 The distortion of neutrino energy spectrum carries additional oscillation information and can improve the sensitivity of θ13 as well as measure neutrino mass splitting [Formula: see text]. A rate plus shape analysis is performed and the results have been published.2 Understanding detector energy non-linearity response is crucial for the rate plus shape analysis. In this contribution, we present a brief description of energy non-linearity studies at Daya Bay.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
André de Gouvêa ◽  
Valentina De Romeri ◽  
Christoph A. Ternes

Abstract Reactor experiments are well suited to probe the possible loss of coherence of neutrino oscillations due to wave-packets separation. We combine data from the short-baseline experiments Daya Bay and the Reactor Experiment for Neutrino Oscillation (RENO) and from the long baseline reactor experiment KamLAND to obtain the best current limit on the reactor antineutrino wave-packet width, σ > 2.1 × 10−4 nm at 90% CL. We also find that the determination of standard oscillation parameters is robust, i.e., it is mostly insensitive to the presence of hypothetical decoherence effects once one combines the results of the different reactor neutrino experiments.


2012 ◽  
Vol 8 (S288) ◽  
pp. 326-328
Author(s):  
Ruiguang Wang

AbstractThe Daya Bay Reactor Neutrino Experiment has measured a non-zero value for the neutrino mixing angle θ13 with a significance of 7.7 standard deviations. Antineutrinos from six 2.9 GWth reactors were detected in six antineutrino detectors deployed in two near and one far underground experimental halls. With a 116.8 kton-GWth-day live-time exposure in 139 days, 28,909 (205,308) electron-antineutrino candidates were detected at the far hall (near hall). The ratio of the observed to expected number of antineutrinos at the far hall is R = 0.944 ± 0.007 ± 0.003 (syst). A rate-only analysis finds sin22θ13 = 0.089 ± 0.010 (stat) ± 0.005 (syst) in a three-neutrino framework.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yong Du ◽  
Hao-Lin Li ◽  
Jian Tang ◽  
Sampsa Vihonen ◽  
Jiang-Hao Yu

Abstract The Standard Model Effective Field Theory (SMEFT) provides a systematic and model-independent framework to study neutrino non-standard interactions (NSIs). We study the constraining power of the on-going neutrino oscillation experiments T2K, NOνA, Daya Bay, Double Chooz and RENO in the SMEFT framework. A full consideration of matching is provided between different effective field theories and the renormalization group running at different scales, filling the gap between the low-energy neutrino oscillation experiments and SMEFT at the UV scale. We first illustrate our method with a top- down approach in a simplified scalar leptoquark model, showing more stringent constraints from the neutrino oscillation experiments compared to collider studies. We then provide a bottom-up study on individual dimension-6 SMEFT operators and find NSIs in neutrino experiments already sensitive to new physics at ∼20 TeV when the Wilson coefficients are fixed at unity. We also investigate the correlation among multiple operators at the UV scale and find it could change the constraints on SMEFT operators by several orders of magnitude compared with when only one operator is considered. Furthermore, we find that accelerator and reactor neutrino experiments are sensitive to different SMEFT operators, which highlights the complementarity of the two experiment types.


2012 ◽  
Vol 396 (2) ◽  
pp. 022061 ◽  
Author(s):  
Qingmin Zhang ◽  
Miao He ◽  
Jilei Xu ◽  
Jiaheng Zou ◽  
Zhe Ning ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document