scholarly journals Combined analysis of neutrino decoherence at reactor experiments

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
André de Gouvêa ◽  
Valentina De Romeri ◽  
Christoph A. Ternes

Abstract Reactor experiments are well suited to probe the possible loss of coherence of neutrino oscillations due to wave-packets separation. We combine data from the short-baseline experiments Daya Bay and the Reactor Experiment for Neutrino Oscillation (RENO) and from the long baseline reactor experiment KamLAND to obtain the best current limit on the reactor antineutrino wave-packet width, σ > 2.1 × 10−4 nm at 90% CL. We also find that the determination of standard oscillation parameters is robust, i.e., it is mostly insensitive to the presence of hypothetical decoherence effects once one combines the results of the different reactor neutrino experiments.

2013 ◽  
Vol 2013 ◽  
pp. 1-34 ◽  
Author(s):  
Soo-Bong Kim ◽  
Thierry Lasserre ◽  
Yifang Wang

We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angleθ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.


2014 ◽  
Vol 29 (16) ◽  
pp. 1430016 ◽  
Author(s):  
Xin Qian ◽  
Wei Wang

We review the current-generation short-baseline reactor neutrino experiments that have firmly established the third neutrino mixing angle θ13 to be nonzero. The relative large value of θ13 (around 9°) has opened many new and exciting opportunities for future neutrino experiments. Daya Bay experiment with the first measurement of [Formula: see text] is aiming for a precision measurement of this atmospheric mass-squared splitting with a comparable precision as [Formula: see text] from accelerator muon neutrino experiments. JUNO, a next-generation reactor neutrino experiment, is targeting to determine the neutrino mass hierarchy (MH) with medium baselines (~ 50 km). Beside these opportunities enabled by the large θ13, the current-generation (Daya Bay, Double Chooz, and RENO) and the next-generation (JUNO, RENO-50, and PROSPECT) reactor experiments, with their unprecedented statistics, are also leading the precision era of the three-flavor neutrino oscillation physics as well as constraining new physics beyond the neutrino Standard Model.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mario A. Acero ◽  
Alexis A. Aguilar-Arevalo ◽  
Dairo J. Polo-Toledo

We present a neutrino oscillation analysis of two particular data sets from the Daya Bay and RENO reactor neutrino experiments aiming to study the increase in precision in the oscillation parameters sin22θ13 and the effective mass splitting Δmee2 gained by combining two relatively simple to reproduce analyses available in the literature. For Daya Bay, the data from 217 days between December 2011 and July 2012 were used. For RENO, we used the data from 500 live days between August 2011 and January 2012. We reproduce reasonably well the results of the individual analyses, both rate-only and spectral, defining a suitable χ2 statistic for each case. Finally, we performed a combined spectral analysis and extract tighter constraints on the parameters, with an improved precision between 30 and 40% with respect to the individual analyses considered.


2016 ◽  
Vol 31 (20n21) ◽  
pp. 1650123 ◽  
Author(s):  
Paraskevi Divari ◽  
John Vergados

In this paper, we study the effect of conversion of super-light sterile neutrino (SLSN) to electron neutrino in matter like that of the Earth. In the Sun the resonance conversion between SLSN and electron neutrino via the neutral current is suppressed due to the smallness of neutron number. On the other hand, neutron number density can play an important role in the Earth, making the scenario of SLSN quite interesting. The effect of CP-violating phases on active-SLSN oscillations is also discussed. Reactor neutrino experiments with medium or short baseline may probe the scenario of SLSN.


2013 ◽  
Vol 28 (31) ◽  
pp. 1350131 ◽  
Author(s):  
SRINU GOLLU ◽  
K. N. DEEPTHI ◽  
R. MOHANTA

The recent results from Daya Bay and RENO reactor neutrino experiments have firmly established that the smallest reactor mixing angle θ13 is nonvanishing at the 5 σ level, with a relatively large value, i.e. θ13 ≈ 9°. Using the fact that the neutrino mixing matrix can be represented as [Formula: see text], where Ul and Uν result from the diagonalization of the charged lepton and neutrino mass matrices and Pν is a diagonal matrix containing the Majorana phases and assuming the tri-bimaximal (TBM) form for Uν, we investigate the possibility of accounting for the large reactor mixing angle due to the corrections of the charged lepton mixing matrix. The form of Ul is assumed to be that of CKM mixing matrix of the quark sector. We find that with this modification it is possible to accommodate the large observed reactor mixing angle θ13. We also study the implications of such corrections on the other phenomenological observables.


2012 ◽  
Vol 27 (08) ◽  
pp. 1230010 ◽  
Author(s):  
C. MARIANI

In this document we will review the current status of reactor neutrino oscillation experiments and present their physics potentials for measuring the θ13 neutrino mixing angle. The neutrino mixing angle θ13 is currently a high-priority topic in the field of neutrino physics. There are currently three different reactor neutrino experiments, DOUBLE CHOOZ, DAYA BAY and RENO and a few accelerator neutrino experiments searching for neutrino oscillations induced by this angle. A description of the reactor experiments searching for a nonzero value of θ13 is given, along with a discussion of the sensitivities that these experiments can reach in the near future.


2019 ◽  
Vol 214 ◽  
pp. 01013
Author(s):  
Andrea Borga ◽  
Eric Church ◽  
Frank Filthaut ◽  
Enrico Gamberini ◽  
Jong Paul de ◽  
...  

The liquid argon Time Projection Chamber technique has matured and is now in use by several short-baseline neutrino experiments. This technology will be used in the long-baseline DUNE experiment; however, this experiment represents a large increase in scale, for which the technology needs to be validated explicitly. To this end, both the single-phase and dual-phase implementations of the technology are being tested at CERN in two full-scale (10 × 10 × 10 m3) ProtoDUNE setups. Besides the detector technology, these setups also allow for extensive tests of readout strategies. The Front-End LInk eXchange (FELIX) system was initially developed within the ATLAS collaboration and is based on custom FPGA-based PCIe I/O cards in combination with commodity servers. FELIX will be used in the single-phase ProtoDUNE setup to read the data coming from 2560 anode wires organized in a single Anode Plane Assembly structure. With a sampling rate of 2 MHz, the system must buffer and process an input rate of 74 Gb/s. Event building requests will arrive at a target rate of 25 Hz, and loss-less compression must reduce the data within the requested time windows before it is sent to the experiment’s event building farm. This paper discusses the design of the system as well as first operational experiences.


2004 ◽  
Vol 19 (08) ◽  
pp. 1157-1166
Author(s):  
K. INOUE

Previous searches for neutrino oscillations with reactor neutrinos have been done only with baselines less than 1 km. The observed neutrino flux was consistent with the expectation and only excluded regions were drawn on the neutrino-oscillation-parameter space. Thus, those experiments played important roles in understanding neutrinos from fission reactors. Based on the knowledge from those experiments, an experiment with about a 180 km baseline became possible. Results obtained from this baseline experiment showed evidence for reactor neutrino disappearance and finally provide a resolution for the long standing solar neutrino problem when combined with results from the solar neutrino experiments. Several possibilities to explore the last unmeasured mixing angle θ13 with reactor neutrinos have recently been proposed. They will provide complementary information to long baseline accelerator experiments when one tries to solve the degeneracy of oscillation parameters. Reactor neutrinos are also useful to study the neutrino magnetic moment and the most stringent limits from terrestrial experiments are obtained by measuring the elastic scattering cross section of reactor neutrinos.


Author(s):  
C.R. Das ◽  
Jukka Maalampi ◽  
João Pulido ◽  
Sampsa Vihonen

We study the possibility of determining the octant of the neutrino mixing angle 23, that is, whether 23 > 45 or 23 < 45, in long baseline neutrino experiments. Here we numerically derived the sensitivity limits within which these experiments can determine, by measuring the probability of the ! e transitions, the octant of 23 with a 5 certainty. The interference of the CP violation angle with these limits, as well as the effects of the baseline length and the run-time ratio of neutrino and antineutrino modes of the beam have been analyzed.


Sign in / Sign up

Export Citation Format

Share Document