scholarly journals Energy non-linearity studies at Daya Bay

2014 ◽  
Vol 31 ◽  
pp. 1460312 ◽  
Author(s):  
Masheng Yang ◽  
Yaping Cheng ◽  

The Daya Bay Reactor Neutrino Experiment has measured a non-zero value of the neutrino mixing angle θ13 with a significance of 7.7 standard deviations by a rate-only analysis.1 The distortion of neutrino energy spectrum carries additional oscillation information and can improve the sensitivity of θ13 as well as measure neutrino mass splitting [Formula: see text]. A rate plus shape analysis is performed and the results have been published.2 Understanding detector energy non-linearity response is crucial for the rate plus shape analysis. In this contribution, we present a brief description of energy non-linearity studies at Daya Bay.

2019 ◽  
Vol 64 (7) ◽  
pp. 653
Author(s):  
V. Vorobel

The Daya Bay Reactor Neutrino Experiment was designed to measure Θ13, the smallest mixing angle in the three-neutrino mixing framework, with unprecedented precision. The experiment consists of eight identically designed detectors placed underground at different baselines from three pairs of nuclear reactors in South China. Since Dec. 2011, the experiment has been running stably for more than 7 years, and has collected the largest reactor antineutrino sample to date. Daya Bay greatly improved the precision on Θ13 and made an independent measurement of the effective mass splitting in the electron antineutrino disappearance channel. Daya Bay also performed a number of other precise measurements such as a high-statistics determination of the absolute reactor antineutrino flux and the spectrum evolution, as well as a search for the sterile neutrino mixing, among others. The most recent results from Daya Bay are discussed in this paper, as well as the current status and future prospects of the experiment.


2012 ◽  
Vol 8 (S288) ◽  
pp. 326-328
Author(s):  
Ruiguang Wang

AbstractThe Daya Bay Reactor Neutrino Experiment has measured a non-zero value for the neutrino mixing angle θ13 with a significance of 7.7 standard deviations. Antineutrinos from six 2.9 GWth reactors were detected in six antineutrino detectors deployed in two near and one far underground experimental halls. With a 116.8 kton-GWth-day live-time exposure in 139 days, 28,909 (205,308) electron-antineutrino candidates were detected at the far hall (near hall). The ratio of the observed to expected number of antineutrinos at the far hall is R = 0.944 ± 0.007 ± 0.003 (syst). A rate-only analysis finds sin22θ13 = 0.089 ± 0.010 (stat) ± 0.005 (syst) in a three-neutrino framework.


2014 ◽  
Vol 29 (16) ◽  
pp. 1430016 ◽  
Author(s):  
Xin Qian ◽  
Wei Wang

We review the current-generation short-baseline reactor neutrino experiments that have firmly established the third neutrino mixing angle θ13 to be nonzero. The relative large value of θ13 (around 9°) has opened many new and exciting opportunities for future neutrino experiments. Daya Bay experiment with the first measurement of [Formula: see text] is aiming for a precision measurement of this atmospheric mass-squared splitting with a comparable precision as [Formula: see text] from accelerator muon neutrino experiments. JUNO, a next-generation reactor neutrino experiment, is targeting to determine the neutrino mass hierarchy (MH) with medium baselines (~ 50 km). Beside these opportunities enabled by the large θ13, the current-generation (Daya Bay, Double Chooz, and RENO) and the next-generation (JUNO, RENO-50, and PROSPECT) reactor experiments, with their unprecedented statistics, are also leading the precision era of the three-flavor neutrino oscillation physics as well as constraining new physics beyond the neutrino Standard Model.


2013 ◽  
Vol 28 (31) ◽  
pp. 1350131 ◽  
Author(s):  
SRINU GOLLU ◽  
K. N. DEEPTHI ◽  
R. MOHANTA

The recent results from Daya Bay and RENO reactor neutrino experiments have firmly established that the smallest reactor mixing angle θ13 is nonvanishing at the 5 σ level, with a relatively large value, i.e. θ13 ≈ 9°. Using the fact that the neutrino mixing matrix can be represented as [Formula: see text], where Ul and Uν result from the diagonalization of the charged lepton and neutrino mass matrices and Pν is a diagonal matrix containing the Majorana phases and assuming the tri-bimaximal (TBM) form for Uν, we investigate the possibility of accounting for the large reactor mixing angle due to the corrections of the charged lepton mixing matrix. The form of Ul is assumed to be that of CKM mixing matrix of the quark sector. We find that with this modification it is possible to accommodate the large observed reactor mixing angle θ13. We also study the implications of such corrections on the other phenomenological observables.


2012 ◽  
Vol 27 (08) ◽  
pp. 1230010 ◽  
Author(s):  
C. MARIANI

In this document we will review the current status of reactor neutrino oscillation experiments and present their physics potentials for measuring the θ13 neutrino mixing angle. The neutrino mixing angle θ13 is currently a high-priority topic in the field of neutrino physics. There are currently three different reactor neutrino experiments, DOUBLE CHOOZ, DAYA BAY and RENO and a few accelerator neutrino experiments searching for neutrino oscillations induced by this angle. A description of the reactor experiments searching for a nonzero value of θ13 is given, along with a discussion of the sensitivities that these experiments can reach in the near future.


2020 ◽  
Vol 239 ◽  
pp. 02005
Author(s):  
Le Yang ◽  
Xubo Ma ◽  
Runze Zhu ◽  
Yaozhou Li ◽  
Zifeng Huang

Recently, three successful antineutrino experiments (Daya Bay, Double Chooz, and RENO) measured the neutrino mixing angle θ13; however, significant discrepancies were found, both in the absolute flux and spectral shape. Much effort has been expended investigating the possible reasons for the discrepancies. In this paper, the change of neutrino energy spectrum with burnup is analyzed from the point of view of the change of neutrino energy spectrum with burnup. An accurate method for calculating neutrino energy spectrum is proposed. The non-equilibrium correction is studied by using this method. It is found that the non-equilibrium correction contributes not only to the energy region less than 4.0 MeV, but also to the energy region greater than 4.0 MeV, with a maximum correction of about 3%.


2013 ◽  
Vol 28 (12) ◽  
pp. 1350040 ◽  
Author(s):  
XUE-WEN LIU ◽  
SHUN ZHOU

The Daya Bay and RENO reactor neutrino experiments have revealed that the smallest neutrino mixing angle is in fact relatively large, i.e. θ13 ≈9°. Motivated by this exciting progress, we perform a systematic study of the neutrino mass matrix Mν with one or two texture zeros, in the assumption that neutrinos are Dirac particles. Among 15 possible patterns with two texture zeros, only three turn out to be favored by current neutrino oscillation data at the 3σ level. Although all the six patterns with one texture zero are compatible with the experimental data at the 3σ level, the parameter space of each pattern is strictly constrained. Phenomenological implications of Mν on the leptonic CP violation and neutrino mass spectrum are explored, and the stability of texture zeros against the radiative corrections is also discussed.


2012 ◽  
Vol 396 (2) ◽  
pp. 022061 ◽  
Author(s):  
Qingmin Zhang ◽  
Miao He ◽  
Jilei Xu ◽  
Jiaheng Zou ◽  
Zhe Ning ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document