Triple Higgs boson production at ILC in the Higgs triplet model

2014 ◽  
Vol 29 (23) ◽  
pp. 1450092 ◽  
Author(s):  
Jun Cao ◽  
Jie-Fen Shen

Besides the Standard Model (SM)-like Higgs boson h, the Higgs Triplet Model (HTM) predicts the existence of charged and doubly charged Higgs bosons (H±and H±±). In this paper, we focus on the study of the triple Higgs production at the International Linear Collider (ILC): e-e+→hH+H-and e-e+→hH++H–. We present the production cross-sections and discuss the relevant SM backgrounds. Our numerical results show that, with reasonable parameter values, the values of the cross-sections for two processes can reach the level several fb and tens of fb, respectively. Due to large production cross-section and small SM background, the possible signals of H±and H±±might be detected via these processes in the future ILC experiments.

2014 ◽  
Vol 29 (10) ◽  
pp. 1450041 ◽  
Author(s):  
Jun Cao ◽  
Jie-Fen Shen

The characteristic feature of the Higgs Triplet Model (HTM) is the existence of the doubly charged Higgs bosons H±±. In this paper, we study the pair production of doubly charged Higgs bosons in γγ collisions at the International Linear Collider (ILC). We present the production cross-sections and the distributions of the various observables, i.e. the distributions of the transverse momenta, the rapidity distributions for doubly charged Higgs bosons and the production angle distributions of the charged Higgs boson pair. Our numerical results show that, the values of the unpolarized cross-sections can reach a few hundreds of fb. We also study the possible final state for the decay mode H±±→W±W± and relevant Standard Model (SM) background. Due to high produced rate and small SM background, the possible signals of H±± might be detected via this process in the future ILC experiments.


2018 ◽  
Vol 33 (11) ◽  
pp. 1841003
Author(s):  
Jun Cao ◽  
Yu-Qi Li ◽  
Yao-Bei Liu

The Georgi–Machacek (GM) model predicts the existence of the doubly-charged scalars [Formula: see text], which can be seen the typical particles in this model and their diboson decay channels are one of the most promising ways to discover such new doubly-charged scalars. Based on the constraints of the latest combined ATLAS and CMS Higgs boson diphoton signal strength data at [Formula: see text] confidence level, we focus on the study of the triple scalar production in [Formula: see text] collisions at the future International Linear collider (ILC): [Formula: see text], where the production cross-sections are very sensitive to the triple scalar coupling parameter [Formula: see text]. Considering the typical same-sign diboson decay modes for the doubly-charged scalars, the possible final signals might be detected via this process at the future ILC experiments.


2016 ◽  
Vol 31 (17) ◽  
pp. 1650099 ◽  
Author(s):  
Jinzhong Han ◽  
Bingfang Yang ◽  
Ning Liu ◽  
Jitao Li

In the framework of the minimal [Formula: see text] extension of the Standard Model, we investigate the Higgs boson production processes [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] at the International Linear Collider (ILC). We present the production cross-sections, the relative corrections and compare our results with the expected experimental accuracies for Higgs decay channel [Formula: see text]. In the allowed parameter space, we find that the effects of the three single Higgs boson production processes might approach the observable threshold of the ILC. But the Higgs signal strengths [Formula: see text] of the two double Higgs boson production processes are all out of the observable threshold so that these effects will be difficult to be observed at the ILC.


2015 ◽  
Vol 30 (16) ◽  
pp. 1550096 ◽  
Author(s):  
Jie-Fen Shen ◽  
Yan-Ping Bi ◽  
Yi Yu ◽  
Yan-Ju Zhang

The singly and doubly charged Higgs bosons (H± and H±±) are the typical particles predicted in the Higgs Triplet Model and the observation of these particles can be regarded as the direct evidence of new physics. In this paper, we focus on the study of the singly and doubly charged Higgs bosons associated production process: e+e- → H+H--W+. We present the production cross sections and the distributions of the transverse momenta and the rapidity distributions for outgoing particles. The numerical results show that the production rates can reach the level of several fb with reasonable parameter values. So, one can expect that enough signals could be produced in the future high-energy e+e- collider experiments. The relevant SM backgrounds are also discussed in the case that the vacuum expectation value of the triplet is around 1 GeV.


Author(s):  
Pierce Giffin ◽  
Ian M. Lewis ◽  
Yajuan Zheng

Abstract In recent years there have been many proposals for new electron-positron colliders, such as the Circular Electron-Positron Collider, the International Linear Collider, and the Future Circular Collider in electron-positron mode. Much of the motivation for these colliders is precision measurements of the Higgs boson and searches for new electroweak states. Hence, many of these studies are focused on energies above the h Z threshold. However, there are proposals to run these colliders at the lower WW threshold and Z-pole energies. In this paper, we study a new search for Higgs physics accessible at lower energies: e+e− → h Zd, where Zdis a new light gauge boson such as a dark photon or dark-Z. Such searches can be conducted at the WW threshold, i.e. energies below the h Z threshold where exotic Higgs decays can be searched for in earnest. Additionally, due to very good angular and energy resolution at future electron-positron colliders, these searches will be sensitive to Zd masses below 1 GeV, which is lower than the current direct LHC searches. We will show that at √s = 160 GeV with 10 ab−1, a search for e+e− → h Zd is sensitive to h −Z −Zd couplings of δ ∼ 9 × 10−3and cross sections of ∼ 2 − 3 ab for Zd masses below 1 GeV. The results are similar at √s = 240 GeV with 5 ab−1.


2012 ◽  
Vol 27 (06) ◽  
pp. 1250030 ◽  
Author(s):  
XIN QIN ◽  
YAO-BEI LIU

Besides the SM-like Higgs boson h, the left–right twin Higgs (LRTH) model predicts the existence of three additional Higgs bosons: one neutral Higgs ϕ0and a pair of charged Higgs bosons ϕ±. In this paper, we focus on the study of the triple Higgs production at the ILC, i.e. e+e-→ϕ0ϕ+ϕ-and e+e-→hhϕ0. We present the production cross-sections and the distributions of the various observables, such as, the distributions of the energy and the transverse momenta of neutral and charged Higgs bosons, the differential cross-section of the invariant mass of final Higgs bosons pair, and the production angle distributions of neutral Higgs boson and charged Higgs boson. Our numerical results show that, for the processes e+e-→ϕ0ϕ+ϕ-and e+e-→hhϕ0, the production rates are at the level of 10-1fb with reasonable parameter values while the resonance production cross-section can be significantly enhanced and reach several tens fb. The signatures for signals and corresponding standard model backgrounds are also investigated for the decay mode [Formula: see text].


2011 ◽  
Vol 26 (09) ◽  
pp. 1629-1637 ◽  
Author(s):  
YAO-BEI LIU ◽  
HUI YE ◽  
YONG-HUA CAO

In the framework of the topcolor-assisted technicolor (TC2) model, we study the neutral top-Higgs [Formula: see text] production processes [Formula: see text], [Formula: see text] and [Formula: see text]. The results show that the production rates can reach the level of a few fb with reasonable parameter values. With the clean background of the flavor-changing [Formula: see text] channel, the top-Higgs events can possibly be detected at the International Linear Collider (ILC) experiments. Therefore, such neutral top-Higgs production processes offer a useful way to probe for neutral top-Higgs and test the TC2 model directly.


Sign in / Sign up

Export Citation Format

Share Document