Role of division algebra in seven-dimensional gauge theory

2015 ◽  
Vol 30 (10) ◽  
pp. 1550047
Author(s):  
Pushpa Kalauni ◽  
J. C. A. Barata

The algebra of octonions 𝕆 forms the largest normed division algebra over the real numbers ℝ, complex numbers ℂ and quaternions ℍ. The usual three-dimensional vector product is given by quaternions, while octonions produce seven-dimensional vector product. Thus, octonionic algebra is closely related to the seven-dimensional algebra, therefore one can extend generalization of rotations in three dimensions to seven dimensions using octonions. An explicit algebraic description of octonions has been given to describe rotational transformation in seven-dimensional space. We have also constructed a gauge theory based on non-associative algebra to discuss Yang–Mills theory and field equation in seven-dimensional space.

1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2008 ◽  
Vol 99 (5) ◽  
pp. 2602-2616 ◽  
Author(s):  
Marion R. Van Horn ◽  
Pierre A. Sylvestre ◽  
Kathleen E. Cullen

When we look between objects located at different depths the horizontal movement of each eye is different from that of the other, yet temporally synchronized. Traditionally, a vergence-specific neuronal subsystem, independent from other oculomotor subsystems, has been thought to generate all eye movements in depth. However, recent studies have challenged this view by unmasking interactions between vergence and saccadic eye movements during disconjugate saccades. Here, we combined experimental and modeling approaches to address whether the premotor command to generate disconjugate saccades originates exclusively in “vergence centers.” We found that the brain stem burst generator, which is commonly assumed to drive only the conjugate component of eye movements, carries substantial vergence-related information during disconjugate saccades. Notably, facilitated vergence velocities during disconjugate saccades were synchronized with the burst onset of excitatory and inhibitory brain stem saccadic burst neurons (SBNs). Furthermore, the time-varying discharge properties of the majority of SBNs (>70%) preferentially encoded the dynamics of an individual eye during disconjugate saccades. When these experimental results were implemented into a computer-based simulation, to further evaluate the contribution of the saccadic burst generator in generating disconjugate saccades, we found that it carries all the vergence drive that is necessary to shape the activity of the abducens motoneurons to which it projects. Taken together, our results provide evidence that the premotor commands from the brain stem saccadic circuitry, to the target motoneurons, are sufficient to ensure the accurate control shifts of gaze in three dimensions.


2022 ◽  
Vol 275 (1349) ◽  
Author(s):  
Leonard Gross

The existence and uniqueness of solutions to the Yang-Mills heat equation is proven over R 3 \mathbb {R}^3 and over a bounded open convex set in R 3 \mathbb {R}^3 . The initial data is taken to lie in the Sobolev space of order one half, which is the critical Sobolev index for this equation over a three dimensional manifold. The existence is proven by solving first an augmented, strictly parabolic equation and then gauge transforming the solution to a solution of the Yang-Mills heat equation itself. The gauge functions needed to carry out this procedure lie in the critical gauge group of Sobolev regularity three halves, which is a complete topological group in a natural metric but is not a Hilbert Lie group. The nature of this group must be understood in order to carry out the reconstruction procedure. Solutions to the Yang-Mills heat equation are shown to be strong solutions modulo these gauge functions. Energy inequalities and Neumann domination inequalities are used to establish needed initial behavior properties of solutions to the augmented equation.


1975 ◽  
Vol 72 (1) ◽  
pp. 49-65 ◽  
Author(s):  
K. C. Wang

This paper investigates the three-dimensional laminar boundary layer over a blunt body (a prolate spheroid) at low incidence and with reversed flow. Results reflecting the general characteristics of such a problem are presented. More significant are the features relating to the circumferential flow reversal. Some of these features confirm our early hypotheses concerning the existence of a reversed region ahead of separation and the role of the zero-cfθ line in the general context of separation in three dimensions. Other features are unexpected, including the distribution of cfμ and the shape of the separation line. Here cfθ and cfμ denote, respectively, the circumferential and meridional components of the skin friction.


1993 ◽  
Vol 2 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Kristinn R. Thorisson

The most common visual feedback technique in teleoperation is in the form of monoscopic video displays. As robotic autonomy increases and the human operator takes on the role of a supervisor, three-dimensional information is effectively presented by multiple, televised, two-dimensional (2-D) projections showing the same scene from different angles. To analyze how people go about using such segmented information for estimations about three-dimensional (3-D) space, 18 subjects were asked to determine the position of a stationary pointer in space; eye movements and reaction times (RTs) were recorded during a period when either two or three 2-D views were presented simultaneously, each showing the same scene from a different angle. The results revealed that subjects estimated 3-D space by using a simple algorithm of feature search. Eye movement analysis supported the conclusion that people can efficiently use multiple 2-D projections to make estimations about 3-D space without reconstructing the scene mentally in three dimensions. The major limiting factor on RT in such situations is the subjects' visual search performance, giving in this experiment a mean of 2270 msec (SD = 468; N = 18). This conclusion was supported by predictions of the Model Human Processor (Card, Moran, & Newell, 1983), which predicted a mean RT of 1820 msec given the general eye movement patterns observed. Single-subject analysis of the experimental data suggested further that in some cases people may base their judgments on a more elaborate 3-D mental model reconstructed from the available 2-D views. In such situations, RTs and visual search patterns closely resemble those found in the mental rotation paradigm (Just & Carpenter, 1976), giving RTs in the range of 5-10 sec.


There exists in space of four dimensions an interesting figure of 15 lines and 15 points, first considered by Stéphanos (‘Compt. Rendus,’ vol. 93, 1881), though suggested very clearly by Cremona’s discussion of cubic surfaces in three-dimensional space. In connection with the figure of 15 lines there arises a quartic surface, the intersection of two quadrics, which is of importance as giving rise by projection to the Cyclides, as Segre has shown in detail (‘Math. Ann.,’ vol. 24, 1884). The symmetry of the figure suggests, howrever, the consideration of 15 such quartic surfaces; and it is natural to inquire as to the mutual relations of these surfaces, in particular as to their intersections. In general, two surfaces in space of four dimensions meet in a finite number of points. It appears that in this case any two of these 15 surfaces have a curve in common; it is the purpose of the present note to determine the complete intersection of any two of these 15 surfaces. Similar results may be obtained for a system of cubic surfaces in three dimensions, corresponding to those here given for this system of quartic surfaces in four dimensions, since the surfaces have one point in common, which may be taken as the centre of a projection.


2016 ◽  
Vol 72 (3) ◽  
pp. 312-323 ◽  
Author(s):  
A. Janner

The positions of phosphorus in B-DNA have the remarkable property of occurring (in axial projection) at well defined points in the three-dimensional space of a projected five-dimensional decagonal lattice, subdividing according to the golden mean ratio τ:1:τ [with τ = (1+\sqrt {5})/2] the edges of an enclosing decagon. The corresponding planar integral indicesn1,n2,n3,n4(which are lattice point coordinates) are extended to include the axial indexn5as well, defined for each P position of the double helix with respect to the single decagonal lattice ΛP(aP,cP) withaP= 2.222 Å andcP= 0.676 Å. A finer decagonal lattice Λ(a,c), witha=aP/6 andc=cP, together with a selection of lattice points for each nucleotide with a given indexed P position (so as to define a discrete set in three dimensions) permits the indexing of the atomic positions of the B-DNA d(AGTCAGTCAG) derived by M. J. P. van Dongen. This is done for both DNA strands and the single lattice Λ. Considered first is the sugar–phosphate subsystem, and then each nucleobase guanine, adenine, cytosine and thymine. One gets in this way a digital modeling of d(AGTCAGTCAG) in a one-to-one correspondence between atomic and indexed positions and a maximal deviation of about 0.6 Å (for the value of the lattice parameters given above). It is shown how to get a digital modeling of the B-DNA double helix for any given code. Finally, a short discussion indicates how this procedure can be extended to derive coarse-grained B-DNA models. An example is given with a reduction factor of about 2 in the number of atomic positions. A few remarks about the wider interest of this investigation and possible future developments conclude the paper.


Sign in / Sign up

Export Citation Format

Share Document