scholarly journals Examining a possible cascade effect in chiral symmetry breaking

2016 ◽  
Vol 32 (02) ◽  
pp. 1750008
Author(s):  
Amir H. Fariborz ◽  
Renata Jora

We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular quantum chromodynamics (QCD) where we calculate the “four quark” vacuum condensate and a preon composite model based on QCD at higher scales. In this context, we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.

Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 122
Author(s):  
Rudolf Golubich ◽  
Manfried Faber

The center vortex model of quantum-chromodynamics can explain confinement and chiral symmetry breaking. We present a possible resolution for problems of the vortex detection in smooth configurations and discuss improvements for the detection of center vortices.


1982 ◽  
Vol 48 (17) ◽  
pp. 1140-1143 ◽  
Author(s):  
J. Kogut ◽  
M. Stone ◽  
H. W. Wyld ◽  
J. Shigemitsu ◽  
S. H. Shenker ◽  
...  

Author(s):  
Rudolf Golubich ◽  
Manfried Faber

The center vortex model of quantum-chromodynamics can explain confinement and chiral symmetry breaking. We present a possible resolution for problems of the vortex detection in smooth configurations and discuss improvements for the detection of center vortices.


2021 ◽  
Vol 36 (21) ◽  
pp. 2130012
Author(s):  
Michael Creutz

Quantum chromodynamics (QCD), the theory of the strong interactions, involves quarks interacting with non-Abelian gluon fields. This theory has many features that are difficult to impossible to see in conventional diagrammatic perturbation theory. This includes quark confinement, mass generation and chiral symmetry breaking. This paper is a colloquium level overview of the framework for understanding how these effects come about.


2015 ◽  
Vol 30 (34) ◽  
pp. 1550203 ◽  
Author(s):  
Renata Jora

We study the phase diagram of an [Formula: see text] gauge theory in terms of the number of colors [Formula: see text] and flavors [Formula: see text] with emphasis on the confinement and chiral symmetry breaking phases. We argue that as opposed to SUSY QCD there is a small region in the [Formula: see text] plane where the theory has the chiral symmetry broken but it is unconfined. The possibility of a new phase with strong confinement and chiral symmetry breaking is suggested.


Sign in / Sign up

Export Citation Format

Share Document