scholarly journals Gravitational lensing by a black hole in Poincaré gauge theory of gravity

Author(s):  
S. Zamani ◽  
S. Akhshabi

In this paper, by using a recently found black hole solution in the framework of the Poincaré gauge theory of gravity, we study gravitational lensing for a system where the lens is a static spherically symmetric black hole. By analyzing the equations of motion for light rays in a spacetime with torsion, we derive the deflection angle as the light emitted from a source pass through near the black hole and numerically solve the resulting integral. We also study the effects of torsion on the position of images. The results show that the presence of torsion slightly alters both the deflection angle and position of images in this setup.

Author(s):  
Hasan El Moumni ◽  
Karima Masmar ◽  
Ali Övgün

In this paper, we study the gravitational lensing by some black hole classes within the non-linear electrodynamics in weak field limits. First, we calculate an optical geometry of the non-linear electrodynamics black hole then we use the Gauss-Bonnet theorem for finding deflection angle in weak field limits. The effect of non-linear electrodynamics on the deflection angle in leading order terms is studied. Furthermore, we discuss the effects of the plasma medium on the weak deflection angle.


Author(s):  
Ali Övgün ◽  
Yashmitha Kumaran ◽  
Wajiha Javed ◽  
Jameela Abbas

The main goal of this paper is to study the weak gravitational lensing by Horndeski black hole in weak field approximation. In order to do so, we exploit the Gibbons-Werner method to the optical geometry of Horndeski black hole and implement the Gauss-Bonnet theorem to accomplish the deflection angle of light in weak field region. Furthermore, we have endeavored to extend the scale of our work by comprising the impact of plasma medium on the deflection angle as properly. Later, the graphical influence of the deflection angle of photon on Horndeski black hole in plasma and non-plasma medium is examined.


Author(s):  
Wajiha Javed ◽  
Ali Hamza ◽  
Ali Övgün

In this work, we investigate the weak deflection angle of light from exact black hole within the non-linear electrodynamics. First we calculate the Gaussian optical curvature using the optical spacetime geometry. With the help of modern geometrical way popularized by Gibbons and Werner, we examine the deflection angle of light from exact black hole. For this desire, we determine the optical Gaussian curvature and execute the Gauss-Bonnet theorem on optical metric and calculate the leading terms of deflection angle in the weak limit approximation. Furthermore, we likewise study the plasma medium's effect on weak gravitational lensing by exact black hole. Hence we expose the effect of the non-linear electrodynamics on the deflection angle in the weak gravitational field.


Author(s):  
Ali Övgün ◽  
Yashmitha Kumaran ◽  
Wajiha Javed ◽  
Jameela Abbas

The main goal of this paper is to study the weak gravitational lensing by Horndeski black hole in weak field approximation. In order to do so, we exploit the Gibbons-Werner method to the optical geometry of Horndeski black hole and implement the Gauss-Bonnet theorem to accomplish the deflection angle of light in weak field region. Furthermore, we have endeavored to extend the scale of our work by comprising the impact of plasma medium on the deflection angle as properly. Later, the graphical influence of the deflection angle of photon on Horndeski black hole in plasma and non-plasma medium is examined.


Author(s):  
Wajiha Javed ◽  
Ali Hamza ◽  
Ali Övgün

In this work, we investigate the weak deflection angle of light from exact black hole within the non-linear electrodynamics. First we calculate the Gaussian optical curvature using the optical spacetime geometry. With the help of modern geometrical way popularized by Gibbons and Werner, we examine the deflection angle of light from exact black hole. For this desire, we determine the optical Gaussian curvature and execute the Gauss-Bonnet theorem on optical metric and calculate the leading term of deflection angle in the week limit approximation. Furthermore, we likewise study the plasma medium's effect on weak gravitational lensing by exact black hole. Hence we expose the effect of the non-linear electrodynamics on the deflection angle in the weak gravitational field.


Author(s):  
Zonghai Li ◽  
Ali Övgün

In this paper, we study the weak gravitational deflection angle of relativistic massive particles by the Kerr-like black hole in the bumblebee gravity model. In particular, we focus on weak field limits and calculate the deflection angle for a receiver and source at a finite distance from the lens. To this end, we use the Gauss-Bonnet theorem of a two-dimensional surface defined by a generalized Jacobi metric. The spacetime is asymptotically non-flat due to the existence of a bumblebee vector field. Thus the deflection angle is modified and can be divided into three parts: the surface integral of the Gaussian curvature, the path integral of a geodesic curvature of the particle ray and the change in the coordinate angle. In addition, we also obtain the same results by defining the deflection angle. The effects of the Lorentz breaking constant on the gravitational lensing are analyzed. We then consider the finite-distance correction for the deflection angle of massive particles.


Author(s):  
Niyaz Uddin Molla ◽  
Ujjal Debnath

We investigate the strong gravitational lensing on equatorial plane as well as quasi-equatorial plane by the Kerr–Newman-Nut-Quintessence (KNNQ) black hole (BH) with the equation of state (EoS) parameter of the quintessence [Formula: see text] and the quintessence density [Formula: see text]. Our results show that the strong gravitational lensing in the KNNQ black hole space–time has some distinct behaviors from those in the backgrounds of the four dimension Kerr black hole. Also, we investigate the strong gravitational lensing on equatorial plane as well as quasi-equatorial plane by the KNNQ BH with the effects of Nut charge, spin parameter and quintessence parameter. First, we calculate the null geodesic equations using the Hamilton–Jacobi separation method. Then we investigate the equatorial lensing by KNNQ black hole. We obtain the deflection angle and deflection coefficients in the equatorial plane, which is affected by EoS parameter of the quintessence [Formula: see text], quintessence density [Formula: see text], Nut parameter [Formula: see text], spin parameter [Formula: see text] and quintessence parameter [Formula: see text] [Formula: see text]. Next, we discuss the lens equation and the observables in the equatorial plane. Finally, we investigate gravitational lensing by the KNNQ black hole in the quasi-equatorial plane. In this work, the quintessence density [Formula: see text], the EoS parameter of the quintessence [Formula: see text], Nut parameter [Formula: see text], spin parameter [Formula: see text] and quintessence parameter [Formula: see text] [Formula: see text] have significant effects on the strong gravitational lensing both in equatorial plane as well as quasi-equatorial plane.


2020 ◽  
Vol 17 (12) ◽  
pp. 2050182
Author(s):  
Wajiha Javed ◽  
Muhammad Bilal Khadim ◽  
Ali Övgün

In this paper, we analyze the weak gravitational lensing in the context of Einstein-nonlinear-Maxwell–Yukawa black hole. To this desire, we derive the deflection angle of light by Einstein-nonlinear-Maxwell–Yukawa black hole using the Gibbons and Werner method. For this purpose, we obtain the Gaussian curvature and apply the Gauss–Bonnet theorem to find the deflection angle of Einstein-nonlinear-Maxwell–Yukawa black hole in weak field limits. Moreover, we derive the deflection angle of light in the influence of plasma medium. We also analyze the graphical behavior of deflection angle by Einstein-nonlinear-Maxwell–Yukawa black hole in the presence of plasma as well as non-plasma medium.


Author(s):  
Wajiha Javed ◽  
Jameela Abbas ◽  
Yashmitha Kumaran ◽  
Ali Övgün

The main goal of this paper is to study the weak gravitational lensing by Horndeski black hole in weak field approximation. In order to do so, we exploit the Gibbons-Werner method to the optical geometry of Horndeski black hole and implement the Gauss-Bonnet theorem to accomplish the deflection angle of light in weak field region. Furthermore, we have endeavored to extend the scale of our work by comprising the impact of plasma medium on the deflection angle as properly. Later, the graphical influence of the deflection angle of photon on Horndeski black hole in plasma and non-plasma medium is examined.


Author(s):  
Wajiha Javed ◽  
Muhammad Bilal Khadim ◽  
Ali Övgün

In this article, we analyze the weak gravitational lensing in the context of Einstein-non-linear Maxwell-Yukawa black hole. To this desire, we derive the deflection angle of light by Einstein-non-linear Maxwell-Yukawa black hole using the Gibbons and Werner method. For this purpose, we obtain the Gaussian optical curvature and implement the Gauss-Bonnet theorem to investigate the deflection angle of Einstein-non-linear Maxwell-Yukawa black hole. Moreover, we derive the deflection angle of light in the presence of plasma medium. We also analyze the graphical behavior of deflection angle by Einstein-non-linear Maxwell-Yukawa black hole in the presence of plasma as well as non-plasma medium.


Sign in / Sign up

Export Citation Format

Share Document