ULTRAVIOLET FINITE GAUGE THEORIES IN THE FIVE-DIMENSIONAL SPACE-TIME

1993 ◽  
Vol 08 (35) ◽  
pp. 3345-3348
Author(s):  
V. V. BELOKUROV ◽  
M. Z. IOFA

Ultraviolet divergencies in gauge theories including those with higher powers of covariant derivatives are discussed in a space-time of an arbitrary dimension. In particular, it is noted that in the case d=5 all the one-loop graphs are finite, and theories with sufficiently high power of derivatives are finite in all orders.

2021 ◽  
Vol 62 ◽  
pp. 29-52
Author(s):  
Ying-Qiu Gu ◽  

In this note we construct explicit complex and real faithful matrix representations of the Clifford algebras $\Cl_{p,q}$. The representation is based on Pauli matrices and has an elegant structure similar to the fractal geometry. In the cases $p+q=4m$, the representation is unique in equivalent sense, and the $1+3$ dimensional space-time corresponds to the simplest and best case. Besides, the relation between the curvilinear coordinate frame and the local orthonormal basis in the curved space-time is discussed in detail, the covariant derivatives of the spinor and tensors are derived, and the connection of the orthogonal basis in tangent space is calculated. These results are helpful for both theoretical analysis and practical calculation. The basis matrices are the faithful representation of Clifford algebras in any $p+q$ dimensional Minkowski space-time or Riemann space, and the Clifford calculus converts the complicated relations in geometry and physics into simple and concise algebraic operations. Clifford numbers over any number field $\mathbb{F}$ expressed by this matrix basis form a well-defined $2^n$ dimensional hypercomplex number system. Therefore, we can expect that Clifford algebras will complete a large synthesis in science.


Author(s):  
Benaoumeur Bakhti

Using a lattice equation of state combined with the D-dimensional Tolman–Oppenheimer–Volkoff equation and the Friedmann equations, we investigate the possibility of the formation of compact objects as well as the time evolution of the scale factor and the density profile of a self-gravitating material cluster. The numerical results show that in a ([Formula: see text])-dimensional space–time, the mass is independent of the central pressure. Hence, the formation of only compact objects with a finite constant mass similar to the white dwarf is possible. However, in a ([Formula: see text])-dimensional space–time, self-gravity leads to the formation of compact objects with a large gap of mass and the corresponding phase diagram has the same structure as the one for Neutron Star. The results also show that beyond certain critical central pressure, the star is unstable against gravitational collapse, and it may end in a black hole. Analysis of space–times of higher dimensions shows that gravity has the stronger effect in [Formula: see text] dimensions. Numerical solutions of the Friedmann equations show that the effect of the curvature of space–time increases with the increasing temperature, but decreases with the increasing dimensionality beyond [Formula: see text].


2014 ◽  
Vol 556-562 ◽  
pp. 3856-3859
Author(s):  
Jun Zhang

In this paper we use elastic-plastic mechanics and air dynamic to establish the mathematical model of badminton flight trajectory and deformation, and use the ANSYS software to do simulation on badminton flight process, and obtain the flight path and deformation of badminton. In order to analyze the badminton four-dimensional space-time data, we establish the one-dimensional time measurement, and use one-dimensional time transient stress to establish flight trajectory and deformation, and design the four-dimensional space-time steady-state simulation process. Through calculation we eventually get the force of badminton flight process and deformation nephogram. Comparing four times results of numerical simulation results, the mathematical model of this design model meets the design requirements. It provides technical reference for badminton athlete's training and teaching.


1998 ◽  
Vol 13 (09) ◽  
pp. 1523-1542
Author(s):  
C. A. LINHARES ◽  
JUAN A. MIGNACO

We look for the physical consequences resulting from the SU(2) ⊗ SU(2) algebraic structure of the Dirac equation in three-dimensional space–time. We show how this is obtained from the general result we have proven relating the matrices of the Clifford–Dirac ring and the Lie algebra of unitary groups. It allows the introduction of a notion of chirality closely analogous to the one used in four dimensions. The irreducible representations for the Dirac matrices may be labelled with different chirality eigenvalues, and they are related through inversion of any single coordinate axis. We analyze the different discrete transformations for the space of solutions. Finally, we show that the spinor propagator is a direct sum of components with different chirality; the photon propagator receive separate contributions for both chiralities, and the result is that there is no generation of a topological mass at one-loop level. In the case of a charged particle in a constant "magnetic" field we have a good example where chirality plays a determinant role for the degeneracy of states.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


Sign in / Sign up

Export Citation Format

Share Document