scholarly journals Generalized Gaussian Effective Potential: Second-Order Thermal Corrections

1997 ◽  
Vol 12 (15) ◽  
pp. 1077-1085
Author(s):  
Paolo Cea ◽  
Luigi Tedesco

We discuss the finite temperature generalized Gaussian effective potential. We put out a very simple relation between the thermal corrections to the generalized Gaussian effective potential and those of the effective potential. We evaluate explicitly the second-order thermal corrections in the case of the self-interacting scalar field in one spatial dimension.

1990 ◽  
Vol 45 (6) ◽  
pp. 779-782
Author(s):  
Rajkumar Roychoudhury ◽  
Manasi Sengupta

AbstractUsing the Gaussian effective potential approach, φ6 soliton solutions at finite temperature are studied for both the general case and the particular case λ2 = 2ξm2. A critical temperature is found at which soliton solutions cease to exist. The effective potential together with the mass-gap equation are studied in detail, and comparison with existing work on this subject is made


2012 ◽  
Vol 27 (32) ◽  
pp. 1250188 ◽  
Author(s):  
SAMINA S. MASOOD ◽  
MAHNAZ Q. HASEEB

Magnetic moment of electron at finite temperature is directly related to the modified electron mass in the background heat bath. Magnetic moment of electron gets modified at finite temperature also, when it couples with the magnetic field, through its temperature-dependent physical mass. We show that the second-order corrections to the magnetic moment of electron is a complicated function of temperature. We calculate the self-mass induced thermal contributions to the magnetic moment of electron, up to the two-loop level, for temperatures valid around the era of primordial nucleosynthesis. A comparison of thermal behavior of the magnetic moment is also quantitatively studied in detail, around the temperatures below and above the nucleosynthesis temperature.


1989 ◽  
Vol 04 (21) ◽  
pp. 2031-2040 ◽  
Author(s):  
PINAKI ROY ◽  
RAJKUMAR ROYCHOUDHURY ◽  
Y.P. VARSHNI

We evaluate the gaussian effective potential (GEP) for the Sine Gordon theory at finite temperature. Using the GEP we find a critical temperature (Tc) such that for all T≥Tc, soliton solutions in this model cease to exist. The zero temperature situation has also been analysed and it has been shown that for λ≥λc, solitons do not exist.


1990 ◽  
Vol 05 (26) ◽  
pp. 2115-2125
Author(s):  
ROSE P. IGNATIUS ◽  
K. P. SATHEESH ◽  
V. C. KURIAKOSE ◽  
K. BABU JOSEPH

The Gaussian effective potential for the supersymmetric Liouville model is computed both at zero temperature and at a finite temperature. It is noted that the supersymmetric Liouville theory, just like the ordinary Liouville model, does not possess a translationally invariant ground state. The broken translational symmetry is not restored by temperature effects. The supersymmetric Liouville theory is also non-trivial.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Kimmo Kainulainen ◽  
Olli Koskivaara

Abstract We study the dynamical evolution of coupled one- and two-point functions of a scalar field in the 2PI framework at the Hartree approximation, including backreaction from out-of-equilibrium modes. We renormalize the 2PI equations of motion in an on-shell scheme in terms of physical parameters. We present the Hartree-resummed renormalized effective potential at finite temperature and critically discuss the role of the effective potential in a non-equilibrium system. We follow the decay and thermalization of a scalar field from an initial cold state with all energy stored in the potential, into a fully thermalized system with a finite temperature. We identify the non-perturbative processes of parametric resonance and spinodal instability taking place during the reheating stage. In particular we study the unstable modes in the region where the vacuum 1PI effective action becomes complex and show that such spinodal modes can have a dramatic effect on the evolution of the one-point function. Our methods can be easily adapted to simulate reheating at the end of inflation.


Sign in / Sign up

Export Citation Format

Share Document