scholarly journals APPLICATIONS OF EXACT RENORMALIZATION GROUP TECHNIQUES TO THE NON-PERTURBATIVE STUDY OF SUPERSYMMETRIC GAUGE FIELD THEORY

2001 ◽  
Vol 16 (11) ◽  
pp. 1811-1824 ◽  
Author(s):  
S. ARNONE ◽  
S. CHIANTESE ◽  
K. YOSHIDA

Exact Renormalization Group techniques are applied to supersymmetric models in order to get some insights into the low energy effective actions of such theories. Starting from the ultra-violet finite mass deformed N=4 supersymmetric Yang Mills theory, one varies the regularising mass and compensates for it by introducing an effective Wilsonian action. (Polchinski's) renormalization group equation is modified in an essential way by the presence of rescaling (a.k.a. Konishi) anomaly, which is responsible for the beta-function. When supersymmetry is broken up to N=1 the form of effective actions in terms of massless fields is quite reasonable, while in the case of the N=2 model we appear to have problems related to instantons.

2004 ◽  
Vol 18 (04n05) ◽  
pp. 469-478 ◽  
Author(s):  
STEFANO ARNONE ◽  
KENSUKE YOSHIDA

A simple form of the exact renormalization group method is proposed for the study of supersymmetric gauge field theory. The method relies on the existence of ultraviolet-finite four dimensional gauge theories with extended supersymmetry. The resulting exact renormalization group equation crucially depends on the Konishi anomaly of N=1 super Yang–Mills. We illustrate our method by dealing with the NSVZ exact relation for the beta functions, the N=2 super Yang–Mills effective potential and the N=1 super Yang–Mills gluon superpotential (the so-called Veneziano–Yankielowicz potential).


2002 ◽  
Vol 17 (18) ◽  
pp. 1191-1205 ◽  
Author(s):  
STEFANO ARNONE ◽  
DARIO FRANCIA ◽  
KENSUKE YOSHIDA

Exact renormalization group techniques are applied to the mass deformed [Formula: see text] super-symmetric Yang–Mills theory, viewed as a regularized [Formula: see text] model. The solution of the flow equation, in case of dominance of the potential term, reproduces the one-loop (perturbatively exact) expression for the effective action of [Formula: see text] supersymmetric Yang–Mills theory, when the regularizing mass, M, reaches the value of the dynamical cutoff Λ. One speculates about the way in which further nonperturbative contributions (instanton effects) may be accounted for.


2003 ◽  
Vol 18 (05) ◽  
pp. 767-809 ◽  
Author(s):  
B. SATHIAPALAN

The loop variable approach is a proposal for a gauge-invariant generalization of the sigma-model renormalization group method of obtaining equations of motion in string theory. The basic guiding principle is space–time gauge invariance rather than world sheet properties. In essence it is a version of Wilson's exact renormalization group equation for the world sheet theory. It involves all the massive modes and is defined with a finite world sheet cutoff, which allows one to go off the mass-shell. On shell the tree amplitudes of string theory are reproduced. The equations are gauge-invariant off shell also. This paper is a self-contained discussion of the loop variable approach as well as its connection with the Wilsonian RG.


2002 ◽  
Vol 17 (32) ◽  
pp. 4871-4902 ◽  
Author(s):  
YU. A. KUBYSHIN ◽  
R. NEVES ◽  
R. POTTING

Solutions of the Polchinski exact renormalization group equation in the scalar O(N) theory are studied. Families of regular solutions are found and their relation with fixed points of the theory is established. Special attention is devoted to the limit N = ∞, where many properties can be analyzed analytically.


2001 ◽  
Vol 16 (11) ◽  
pp. 2041-2046 ◽  
Author(s):  
JOSÉ GAITE

The coarse-graining operation in hydrodynamics is equivalent to a change of scale which can be formalized as a renormalization group transformation. In particular, its application to the probability distribution of a self-gravitating fluid yields an "exact renormalization group equation" of Fokker-Planck type. Since the time evolution of that distribution can also be described by a Fokker-Planck equation, we propose a connection between both equations, that is, a connection between scale and time evolution. We finally remark on the essentially non-perturbative nature of astrophysical problems, which suggests that the exact renormalization group is the adequate tool for them.


1998 ◽  
Vol 12 (12n13) ◽  
pp. 1321-1341 ◽  
Author(s):  
Yu. Kubyshin

The Polchinski version of the exact renormalization group equation is discussed and its applications in scalar and fermionic theories are reviewed. Relation between this approach and the standard renormalization group is studied, in particular the relation between the derivative expansion and the perturbation theory expansion is worked out in some detail.


Sign in / Sign up

Export Citation Format

Share Document