DIQUARK FORMATION IN ANGULAR-MOMENTUM-EXCITED BARYONS

2009 ◽  
Vol 24 (10) ◽  
pp. 1987-1994 ◽  
Author(s):  
ANTONIO CARLOS BAPTISTA ANTUNES ◽  
LEILA JORGE ANTUNES

Diquarks, or metastable clusters of two quarks inside baryons, are shown to be produced by angular momentum excitation. In baryons with a light quark and two heavy quarks with large angular momentum (L>2), the centrifugal barrier that appears in the rotation frame of the two heavy quarks prevents the light quark from passing freely between the two heavy quarks. The light quark must tunnelize through this potential barrier, which gives rise to the clusters of a light and a heavy quark.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Oleg Andreev

Abstract We propose a string theory construction which allows us to study properties of the potential of two heavy quarks coupled to a light quark. In such a case, the potential is a function of separation between the heavy quarks. The results show the universality of the string tension and factorization at small separations expected from heavy quark-diquark symmetry. In addition, we make an estimate of the string breaking distance. With the parameter values we use, this distance is found to be almost the same as that for the heavy quark-antiquark potential. We also discuss the heavy quark-quark potential and its relation to Lipkin rule.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Zi-qiang Zhang ◽  
De-fu Hou

AbstractWe study the effect of back reaction on the energy loss of light quarks in strongly coupled $${\mathcal {N}}=4$$ N = 4 supersymmetric Yang–Mills (SYM) plasma, by using the AdS/CFT correspondence. We perform the analysis within falling string and shooting string approaches, respectively. It is shown that the back reaction, arising from the presence of static heavy quarks uniformly distributed over SYM, enhances the energy loss, in agreement with the findings of the drag force and jet quenching parameter.


2003 ◽  
Vol 18 (08) ◽  
pp. 1477-1480
Author(s):  
I. BOJAK

We present the first calculation of the complete NLO QCD corrections to the production of heavy flavors with longitudinally polarized hadrons. This reaction can be used at RHIC to extract the gluon helicity density and may shed light on the "heavy quark enigma". The theoretical uncertainties are briefly discussed.


1981 ◽  
Vol 371 (3) ◽  
pp. 381-392 ◽  
Author(s):  
R.C. Johnson ◽  
E.J. Stephenson

1964 ◽  
Vol 135 (1A) ◽  
pp. A39-A43 ◽  
Author(s):  
J. W. Cederberg ◽  
N. F. Ramsey

2019 ◽  
Vol 79 (11) ◽  
Author(s):  
A. D. Bolognino ◽  
Francesco Giovanni Celiberto ◽  
M. Fucilla ◽  
D. Yu. Ivanov ◽  
A. Papa

AbstractThe inclusive hadroproduction of two heavy quarks, featuring a large separation in rapidity, is proposed as a novel probe channel of the Balitsky–Fadin–Kuraev–Lipatov (BFKL) approach. In a theoretical setup which includes full resummation of leading logarithms in the center-of-mass energy and partial resummation of the next-to-leading ones, predictions for the cross section and azimuthal coefficients are presented for kinematic configurations typical of current and possible future experimental analyses at the LHC.


Sign in / Sign up

Export Citation Format

Share Document