scholarly journals META-STABLE BRANE CONFIGURATIONS OF TRIPLE PRODUCT GAUGE GROUPS

2009 ◽  
Vol 24 (25n26) ◽  
pp. 4869-4922
Author(s):  
CHANGHYUN AHN

From an [Formula: see text] supersymmetric electric gauge theory with the gauge group [Formula: see text] with fundamentals for each gauge group and the bifundamentals, we apply Seiberg dual to each gauge group and obtain the [Formula: see text] supersymmetric dual magnetic gauge theories with dual matters including the additional gauge singlets. By analyzing the F-term equations of the dual magnetic superpotentials, we describe the intersecting brane configurations of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua of this gauge theory. We apply also to the case for [Formula: see text] supersymmetric electric gauge theory with the gauge group [Formula: see text] with flavors for each gauge group and the bifundamentals. Finally, we describe the meta-stable brane configurations of multiple product gauge groups.

2009 ◽  
Vol 24 (25n26) ◽  
pp. 4805-4868
Author(s):  
CHANGHYUN AHN

Starting from an [Formula: see text] supersymmetric electric gauge theory with the gauge group [Formula: see text] with fundamentals for each gauge group, the bifundamentals, a symmetric flavor and a conjugate symmetric flavor for SU (Nc), we apply Seiberg dual to each gauge group, obtain the [Formula: see text] supersymmetric dual magnetic gauge theories with dual matters including the gauge singlets, and describe the intersecting brane configurations of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua of this gauge theory. We also discuss the case where a symmetric flavor is replaced by an antisymmetric flavor. Next we apply to the case for [Formula: see text] supersymmetric electric gauge theory with the gauge group [Formula: see text] with flavors for each gauge group and the bifundamentals. Finally, we describe the case where the orientifold 6-plane charge is reversed.


2009 ◽  
Vol 24 (27) ◽  
pp. 5051-5120
Author(s):  
CHANGHYUN AHN

Starting from an [Formula: see text] supersymmetric electric gauge theory with the multiple product gauge group and the bifundamentals, we apply Seiberg dual to each gauge group, obtain the [Formula: see text] supersymmetric dual magnetic gauge theories with dual matters including the gauge singlets. Then we describe the intersecting brane configurations, where there are NS-branes and D4-branes (and anti-D4-branes), of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua of this gauge theory. We also discuss the case where the orientifold 4-planes are added into the above brane configuration. Next, by adding an orientifold 6-plane, we apply to an [Formula: see text] supersymmetric electric gauge theory with the multiple product gauge group (where a single symplectic or orthogonal gauge group is present) and the bifundamentals. Finally, we describe the other cases where the orientifold 6-plane intersects with NS-brane.


2009 ◽  
Vol 24 (28n29) ◽  
pp. 5465-5493
Author(s):  
CHANGHYUN AHN

From an [Formula: see text] supersymmetric electric gauge theory with the gauge group SU (Nc) × SU (N′c) with fundamentals for each gauge group, the bifundamentals and a symmetric flavor and a conjugate symmetric flavor for SU (Nc), we apply Seiberg dual to each gauge group independently and obtain two [Formula: see text] supersymmetric dual magnetic gauge theories with dual matters including the gauge singlets. By analyzing the F-term equations of the dual magnetic superpotentials, we describe the intersecting brane configurations of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua of these gauge theories. The case where the above symmetric flavor is replaced by an antisymmetric flavor is also discussed.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nathan Haouzi ◽  
Jihwan Oh

Abstract We propose a double quantization of four-dimensional $$ \mathcal{N} $$ N = 2 Seiberg-Witten geometry, for all classical gauge groups and a wide variety of matter content. This can be understood as a set of certain non-perturbative Schwinger-Dyson identities, following the program initiated by Nekrasov [1]. The construction relies on the computation of the instanton partition function of the gauge theory on the so-called Ω-background on ℝ4, in the presence of half-BPS codimension 4 defects. The two quantization parameters are identified as the two parameters of this background. The Seiberg-Witten curve of each theory is recovered in the flat space limit. Whenever possible, we motivate our construction from type IIA string theory.


2007 ◽  
Vol 22 (31) ◽  
pp. 2329-2341 ◽  
Author(s):  
CHANGHYUN AHN

Starting from an [Formula: see text] supersymmetric electric gauge theory with the gauge group Sp (N c ) × SO (2N′ c ) with fundamentals for the first gauge group factor and a bifundamental, we apply Seiberg dual to the symplectic gauge group only and arrive at the [Formula: see text] supersymmetric dual magnetic gauge theory with dual matters including the gauge singlets and superpotential. By analyzing the F-term equations of the dual magnetic superpotential, we describe the intersecting brane configuration of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua of this gauge theory.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Andrés Collinucci ◽  
Roberto Valandro

Abstract We propose a string theory realization of three-dimensional $$ \mathcal{N} $$ N = 4 quiver gauge theories with special unitary gauge groups. This is most easily understood in type IIA string theory with D4-branes wrapped on holomorphic curves in local K3’s, by invoking the Stückelberg mechanism. From the type IIB perspective, this is understood as simply compactifying the familiar Hanany-Witten (HW) constructions on a T3. The mirror symmetry duals are easily derived. We illustrate this with various examples of mirror pairs.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
Reona Arai ◽  
Shota Fujiwara ◽  
Yosuke Imamura ◽  
Tatsuya Mori

Abstract The superconformal index of quiver gauge theories realized on D3-branes in toric Calabi–Yau cones is investigated. We use the AdS/CFT correspondence and study D3-branes wrapped on supersymmetric cycles. We focus on brane configurations in which a single D3-brane is wrapped on a cycle, and we do not take account of branes with multiple wrapping. We propose a formula that gives finite-$N$ corrections to the index caused by such brane configurations. We compare the predictions of the formula for several examples with the results on the gauge theory side obtained by using localization for small sizes of gauge groups, and confirm that the formula correctly reproduces the finite-$N$ corrections up to the expected order.


2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Yin-Chen He ◽  
Junchen Rong ◽  
Ning Su

We propose a roadmap for bootstrapping conformal field theories (CFTs) described by gauge theories in dimensions d>2d>2. In particular, we provide a simple and workable answer to the question of how to detect the gauge group in the bootstrap calculation. Our recipe is based on the notion of decoupling operator, which has a simple (gauge) group theoretical origin, and is reminiscent of the null operator of 2d2d Wess-Zumino-Witten CFTs in higher dimensions. Using the decoupling operator we can efficiently detect the rank (i.e. color number) of gauge groups, e.g., by imposing gap conditions in the CFT spectrum. We also discuss the physics of the equation of motion, which has interesting consequences in the CFT spectrum as well. As an application of our recipes, we study a prototypical critical gauge theory, namely the scalar QED which has a U(1)U(1) gauge field interacting with critical bosons. We show that the scalar QED can be solved by conformal bootstrap, namely we have obtained its kinks and islands in both d=3d=3 and d=2+\epsilond=2+ϵ dimensions.


2010 ◽  
Vol 25 (14) ◽  
pp. 2837-2865 ◽  
Author(s):  
CARLOS NÚÑEZ ◽  
IOANNIS PAPADIMITRIOU ◽  
MAURIZIO PIAI

Within the context of a string-theory dual to [Formula: see text] gauge theories with gauge group SU (Nc) and large Nc, we identify a class of solutions to the background equations for which a suitably defined dual of the gauge coupling exhibits the features of a walking theory. We find evidence for three distinct, dynamically generated scales, characterizing walking, symmetry breaking and confinement, and we put them in correspondence with field theory by an analysis of the operators driving the flow.


2002 ◽  
Vol 17 (17) ◽  
pp. 2369-2376 ◽  
Author(s):  
A. IORIO ◽  
T. SÝKORA

We study the space–time symmetries and transformation properties of the non-commutative U(1) gauge theory, by using Noether charges. We carry out our analysis by keeping an open view on the possible ways θμν could transform. Since the theory is not invariant under the conformal transformations, with the only exception of space–time translations, we conclude that the most natural and dynamically consistent requirement is that θμν does not transform under any space–time transformation. A similar analysis should apply to other gauge groups.


Sign in / Sign up

Export Citation Format

Share Document