scholarly journals A string theory realization of special unitary quivers in 3 dimensions

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Andrés Collinucci ◽  
Roberto Valandro

Abstract We propose a string theory realization of three-dimensional $$ \mathcal{N} $$ N = 4 quiver gauge theories with special unitary gauge groups. This is most easily understood in type IIA string theory with D4-branes wrapped on holomorphic curves in local K3’s, by invoking the Stückelberg mechanism. From the type IIB perspective, this is understood as simply compactifying the familiar Hanany-Witten (HW) constructions on a T3. The mirror symmetry duals are easily derived. We illustrate this with various examples of mirror pairs.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Anindya Dey

Abstract Mirror symmetry, a three dimensional $$ \mathcal{N} $$ N = 4 IR duality, has been studied in detail for quiver gauge theories of the ADE-type (as well as their affine versions) with unitary gauge groups. The A-type quivers (also known as linear quivers) and the associated mirror dualities have a particularly simple realization in terms of a Type IIB system of D3-D5-NS5-branes. In this paper, we present a systematic field theory prescription for constructing 3d mirror pairs beyond the ADE quiver gauge theories, starting from a dual pair of A-type quivers with unitary gauge groups. The construction involves a certain generalization of the S and the T operations, which arise in the context of the SL(2, ℤ) action on a 3d CFT with a U(1) 0-form global symmetry. We implement this construction in terms of two supersymmetric observables — the round sphere partition function and the superconformal index on S2 × S1. We discuss explicit examples of various (non-ADE) infinite families of mirror pairs that can be obtained in this fashion. In addition, we use the above construction to conjecture explicit 3d $$ \mathcal{N} $$ N = 4 Lagrangians for 3d SCFTs, which arise in the deep IR limit of certain Argyres-Douglas theories compactified on a circle.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Simone Giacomelli ◽  
Noppadol Mekareeya ◽  
Matteo Sacchi

Abstract Argyres-Douglas (AD) theories constitute an infinite class of superconformal field theories in four dimensions with a number of interesting properties. We study several new aspects of AD theories engineered in A-type class $$ \mathcal{S} $$ S with one irregular puncture of Type I or Type II and also a regular puncture. These include conformal manifolds, structures of the Higgs branch, as well as the three dimensional gauge theories coming from the reduction on a circle. We find that the latter admits a description in terms of a linear quiver with unitary and special unitary gauge groups, along with a number of twisted hypermultiplets. The origin of these twisted hypermultiplets is explained from the four dimensional perspective. We also propose the three dimensional mirror theories for such linear quivers. These provide explicit descriptions of the magnetic quivers of all the AD theories in question in terms of quiver diagrams with unitary gauge groups, together with a collection of free hypermultiplets. A number of quiver gauge theories presented in this paper are new and have not been studied elsewhere in the literature.


1997 ◽  
Vol 490 (1-2) ◽  
pp. 107-120 ◽  
Author(s):  
Massimo Porrati ◽  
Alberto Zaffaroni

2014 ◽  
Vol 29 (32) ◽  
pp. 1530004 ◽  
Author(s):  
Heng-Yu Chen ◽  
Hsiao-Yi Chen ◽  
Jun-Kai Ho

We explicitly apply localization results to study the interpolation between three- and two-dimensional mirror symmetries for Abelian gauge theories with four supercharges. We first use the ellipsoid [Formula: see text] partition functions to verify the mirror symmetry between a pair of general three-dimensional 𝒩 = 2 Abelian Chern–Simons quiver gauge theories. These expressions readily factorize into holomorphic blocks and their antiholomorphic copies, so we can also obtain the partition functions on S1×S2 via fusion procedure. We then demonstrate S1×S2 partition functions for the three-dimensional Abelian gauge theories can be dimensionally reduced to the S2 partition functions of 𝒩 = (2, 2) GLSM and Landau–Ginzburg model for the corresponding two-dimensional mirror pair, as anticipated previously in M. Aganagic et al., J. High Energy Phys.0107, 022 (2001). We also comment on the analogous interpolation for the non-Abelian gauge theories and compute the K-theory vortex partition function for a simple limit to verify the prediction from holomorphic block.


1999 ◽  
Vol 1999 (04) ◽  
pp. 021-021 ◽  
Author(s):  
Anton Kapustin ◽  
Matthew J Strassler

1997 ◽  
Vol 493 (1-2) ◽  
pp. 101-147 ◽  
Author(s):  
Jan de Boer ◽  
Kentaro Hori ◽  
Hirosi Ooguri ◽  
Yaron Oz

1997 ◽  
Vol 493 (1-2) ◽  
pp. 148-176 ◽  
Author(s):  
Jan de Boer ◽  
Kentaro Hori ◽  
Hirosi Ooguri ◽  
Yaron Oz ◽  
Zheng Yin

1996 ◽  
Vol 387 (3) ◽  
pp. 513-519 ◽  
Author(s):  
K. Intriligator ◽  
N. Seiberg

2009 ◽  
Vol 24 (25n26) ◽  
pp. 4869-4922
Author(s):  
CHANGHYUN AHN

From an [Formula: see text] supersymmetric electric gauge theory with the gauge group [Formula: see text] with fundamentals for each gauge group and the bifundamentals, we apply Seiberg dual to each gauge group and obtain the [Formula: see text] supersymmetric dual magnetic gauge theories with dual matters including the additional gauge singlets. By analyzing the F-term equations of the dual magnetic superpotentials, we describe the intersecting brane configurations of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua of this gauge theory. We apply also to the case for [Formula: see text] supersymmetric electric gauge theory with the gauge group [Formula: see text] with flavors for each gauge group and the bifundamentals. Finally, we describe the meta-stable brane configurations of multiple product gauge groups.


Sign in / Sign up

Export Citation Format

Share Document