GENERALIZED UNCERTAINTY PRINCIPLE AND PARIKH–WILCZEK TUNNELING

2009 ◽  
Vol 24 (30) ◽  
pp. 5669-5680 ◽  
Author(s):  
S. HAMID MEHDIPOUR

We investigate the modifications of the Hawking radiation by the Generalized Uncertainty Principle (GUP) and the tunneling process. By using the GUP-corrected de Broglie wavelength, the squeezing of the fundamental momentum cell, and consequently a GUP-corrected energy, we find the nonthermal effects which lead to a nonzero statistical correlation function between probabilities of tunneling of two massive particles with different energies. Then the recovery of part of the information from the black hole radiation is feasible. From the other point of view, the inclusion of the effects of quantum gravity as the GUP expression can halt the evaporation process, so that a stable black hole remnant is left behind, including the other part of the black hole information content. Therefore, these features of the Planck-scale corrections may solve the information problem in black hole evaporation.

2017 ◽  
Vol 32 (15) ◽  
pp. 1750082
Author(s):  
Marco Cavaglià ◽  
Benjamin Harms ◽  
Shaoqi Hou

The Generalized Uncertainty Principle (GUP) implies the existence of a physical minimum length scale [Formula: see text]. In this scenario, black holes must have a radius larger than [Formula: see text]. They are hotter and evaporate faster than in standard Hawking thermodynamics. We study the effects of the GUP on black hole production and decay at the LHC in models with large extra dimensions. Lower bounds on the fundamental Planck scale and the minimum black hole mass at formation are determined from black hole production cross-section limits by the CMS Collaboration. The existence of a minimum length generally decreases the lower bounds on the fundamental Planck scale obtained in the absence of a minimum length.


2018 ◽  
Vol 33 (12) ◽  
pp. 1850069 ◽  
Author(s):  
Christian Corda

We show that our recent Bohr-like approach to black hole (BH) quantum physics implies that spacetime quantization could be energy-dependent. Thus, in a certain sense, spacetime can be neither discrete nor continuous. Our approach also permits to show that the “volume quantum” of the Schwarzschild spacetime increases with increasing energy during BH evaporation and arrives at a maximum value when the Planck scale is reached and the generalized uncertainty principle (GUP) prevents the total BH evaporation. Remarkably, this result does not depend on the BH original mass. The interesting consequence is that the behavior of BH evaporation should be the same for all Schwarzschild BHs when the Planck scale is approached.


2004 ◽  
Vol 19 (13n16) ◽  
pp. 1047-1054 ◽  
Author(s):  
PISIN CHEN

While there exist various candidates, the nature of dark matter remains unresolved. Recently it was argued that the generalized uncertainty principle (GUP) may prevent a black hole from evaporating completely, and as a result there should exist a Planck-size black hole remnant (BHR) at the end of its evaporation. If a sufficient amount of small black holes can be produced in the early universe, then the resultant BHRs can be an interesting candidate for DM. We demonstrate that this is indeed the case for the hybrid inflation model. By assuming BHR as DM, our notion imposes a constraint on the hybrid inflation potential. We show that such a constraint is not so fine-tuned. Possible observational signatures are briefly discussed.


2012 ◽  
Vol 90 (5) ◽  
pp. 425-432 ◽  
Author(s):  
S. Hamid Mehdipour

Using the noncommutative geometry inspired Vaidya metric obtained in terms of coordinate coherent states and also utilizing the generalized uncertainty principle (GUP), we show that the nonthermal nature of the Hawking spectrum leads to Planck-scale nonthermal correlations between emitted modes of evaporation. Our analysis thus exhibits that owing to self-gravitational effects plus noncommutativity and GUP influences, information can emerge in the form of Planck-scale correlated emissions from the black hole.


Sign in / Sign up

Export Citation Format

Share Document