scholarly journals FIELD THEORY OF MASSIVE AND MASSLESS VECTOR PARTICLES IN THE DUFFIN–KEMMER–PETIAU FORMALISM

2011 ◽  
Vol 26 (15) ◽  
pp. 2487-2501 ◽  
Author(s):  
S. I. KRUGLOV

Field theory of massive and massless vector particles is considered in the first-order formalism. The Hamiltonian form of equations is obtained after the exclusion of nondynamical components. We obtain the canonical and symmetrical Belinfante energy–momentum tensors and their nonzero traces. We note that the dilatation symmetry is broken in the massive case but in the massless case the modified dilatation current is conserved. The canonical quantization is performed and the propagator of the massive fields is found in the Duffin–Kemmer–Petiau formalism.

2008 ◽  
Vol 86 (8) ◽  
pp. 995-1000 ◽  
Author(s):  
S I Kruglov

The generalized Maxwell equations including an additional scalar field are considered in the first-order formalism. The gauge invariance of the Lagrangian and the equations is broken resulting in the appearance of a scalar field. We find the canonical and symmetrical Belinfante energy-momentum tensors. It is shown that the traces of the energy-momentum tensors are not equal to zero and the dilatation symmetry is broken in the theory considered. The matrix Hamiltonian form of equations is obtained after the exclusion of the nondynamical components. The canonical quantization is performed and the propagator of the fields is found in the first-order formalism.PACS Nos.: 03.65.Pm, 03.70.+k, 04.20.Fy


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter covers the equations governing the evolution of particle distribution and relates the macroscopic thermodynamical quantities to the distribution function. The motion of N particles is governed by 6N equations of motion of first order in time, written in either Hamiltonian form or in terms of Poisson brackets. Thus, as this chapter shows, as the number of particles grows it becomes necessary to resort to a statistical description. The chapter first introduces the Liouville equation, which states the conservation of the probability density, before turning to the Boltzmann–Vlasov equation. Finally, it discusses the Jeans equations, which are the equations obtained by taking various averages over velocities.


2013 ◽  
Vol 88 (10) ◽  
Author(s):  
Solomon Endlich ◽  
Alberto Nicolis ◽  
Rafael A. Porto ◽  
Junpu Wang

2012 ◽  
Vol 27 (14) ◽  
pp. 1250081 ◽  
Author(s):  
S. I. KRUGLOV

We postulate the second-order derivative equation with four parameters for spin-1/2 fermions possessing two mass states. For some choice of parameters fermions propagate with the superluminal speed. Thus, the novel tachyonic equation is suggested. The relativistic 20-component first-order wave equation is formulated and projection operators extracting states with definite energy and spin projections are obtained. The Lagrangian formulation of the first-order equation is presented and the electric current and energy–momentum tensor are found. The minimal and nonminimal electromagnetic interactions of fermions are considered and Schrödinger's form of the equation and the quantum-mechanical Hamiltonian are obtained. The canonical quantization of the field in the first-order formalism is performed and we find the vacuum expectation of chronological pairing of operators.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marieke Postma ◽  
Graham White

Abstract To obtain a first order phase transition requires large new physics corrections to the Standard Model (SM) Higgs potential. This implies that the scale of new physics is relatively low, raising the question whether an effective field theory (EFT) description can be used to analyse the phase transition in a (nearly) model-independent way. We show analytically and numerically that first order phase transitions in perturbative extensions of the SM cannot be described by the SM-EFT. The exception are Higgs-singlet extension with tree-level matching; but even in this case the SM-EFT can only capture part of the full parameter space, and if truncated at dim-6 operators, the description is at most qualitative. We also comment on the applicability of EFT techniques to dark sector phase transitions.


Author(s):  
Iosif L. Buchbinder ◽  
Ilya L. Shapiro

This chapter discusses canonical quantization in field theory and shows how the notion of a particle arises within the framework of the concept of a field. Canonical quantization is the process of constructing a quantum theory on the basis of a classical theory. The chapter briefly considers the main elements of this procedure, starting from its simplest version in classical mechanics. It first describes the general principles of canonical quantization and then provides concrete examples. The examples include the canonical quantization of free real scalar fields, free complex scalar fields, free spinor fields and free electromagnetic fields.


Sign in / Sign up

Export Citation Format

Share Document