scholarly journals ON SUPERLUMINAL FERMIONS WITHIN THE SECOND DERIVATIVE EQUATION

2012 ◽  
Vol 27 (14) ◽  
pp. 1250081 ◽  
Author(s):  
S. I. KRUGLOV

We postulate the second-order derivative equation with four parameters for spin-1/2 fermions possessing two mass states. For some choice of parameters fermions propagate with the superluminal speed. Thus, the novel tachyonic equation is suggested. The relativistic 20-component first-order wave equation is formulated and projection operators extracting states with definite energy and spin projections are obtained. The Lagrangian formulation of the first-order equation is presented and the electric current and energy–momentum tensor are found. The minimal and nonminimal electromagnetic interactions of fermions are considered and Schrödinger's form of the equation and the quantum-mechanical Hamiltonian are obtained. The canonical quantization of the field in the first-order formalism is performed and we find the vacuum expectation of chronological pairing of operators.

2011 ◽  
Vol 20 (02) ◽  
pp. 161-168 ◽  
Author(s):  
MOHAMMAD R. SETARE ◽  
M. DEHGHANI

We investigate the energy–momentum tensor for a massless conformally coupled scalar field in the region between two curved surfaces in k = -1 static Robertson–Walker space–time. We assume that the scalar field satisfies the Robin boundary condition on the surfaces. Robertson–Walker space–time space is conformally related to Rindler space; as a result we can obtain vacuum expectation values of the energy–momentum tensor for a conformally invariant field in Robertson–Walker space–time space from the corresponding Rindler counterpart by the conformal transformation.


2020 ◽  
Vol 17 (03) ◽  
pp. 2050033
Author(s):  
M. R. Setare ◽  
M. Sahraee

In this paper, we obtain the effect of backreaction on the scale factor of the Friedmann–Lemaître–Robertson–Walker (FLRW) and de Sitter spaces. We consider a non-minimally coupled massive scalar field to the curvature scalar. For our purpose, we use the results of vacuum expectation values of energy–momentum tensor, which have been obtained previously. By substituting the quantum energy density into the Friedmann equation, we obtain the linear order perturbation of the scale factor. So, the effect of backreaction leads to the new scale factor.


2011 ◽  
Vol 03 ◽  
pp. 434-445
Author(s):  
EUGÊNIO R. BEZERRA DE MELLO ◽  
ARAM A. SAHARIAN

In this paper we analyze the vacuum expectation values of the field squared and the energy-momentum tensor associated to a massive scalar field in a higher dimensional cosmic string spacetime, obeying Dirichlet or Neumann boundary conditions on the surface orthogonal to the string.


2016 ◽  
Vol 31 (34) ◽  
pp. 1650183 ◽  
Author(s):  
A. A. Saharian ◽  
V. F. Manukyan ◽  
N. A. Saharyan

Complete set of cylindrical modes is constructed for the electromagnetic field inside and outside a cylindrical shell in the background of [Formula: see text]-dimensional dS space–time. On the shell, the field obeys the generalized perfect conductor boundary condition. For the Bunch–Davies vacuum state, we evaluate the vacuum expectation values (VEVs) of the electric field squared and of the energy–momentum tensor. The shell-induced contributions are explicitly extracted. In this way, for points away from the shell, the renormalization is reduced to the one for the VEVs in the boundary-free dS bulk. As a special case, the VEVs are obtained for a cylindrical shell in the [Formula: see text]-dimensional Minkowski bulk. We show that the shell-induced contribution in the electric field squared is positive for both the interior and exterior regions. The corresponding Casimir–Polder forces are directed toward the shell. The vacuum energy–momentum tensor, in addition to the diagonal components, has a nonzero off-diagonal component corresponding to the energy flux along the direction normal to the shell. This flux is directed from the shell in both the exterior and interior regions. For points near the shell, the leading terms in the asymptotic expansions for the electric field squared and diagonal components of the energy–momentum tensor are obtained from the corresponding expressions in the Minkowski bulk replacing the distance from the shell by the proper distance in the dS bulk. The influence of the gravitational field on the local characteristics of the vacuum is essential at distances from the shell larger than the dS curvature radius. The results are extended for confining boundary conditions of flux tube models in QCD.


2008 ◽  
Vol 23 (12) ◽  
pp. 887-893 ◽  
Author(s):  
D. M. GITMAN ◽  
D. V. VASSILEVICH

We consider a Moyal plane and propose to make the noncommutativity parameter Θμν bifermionic, i.e. composed of two fermionic (Grassmann odd) parameters. The Moyal product then contains a finite number of derivatives, which avoid the difficulties of the standard approach. As an example, we construct a two-dimensional noncommutative field theory model based on the Moyal product with a bifermionic parameter and show that it has a locally conserved energy–momentum tensor. The model has no problem with the canonical quantization and appears to be renormalizable.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040030
Author(s):  
Yuri V. Grats ◽  
Pavel Spirin

We consider the gravity-induced effects associated with a massless scalar field living in a higher-dimensional spacetime being the tensor product of Minkowski space and spherically-symmetric space with angle deficit. These spacetimes are considered as simple models for a multidimensional global monopole or cosmic string with flat extra dimensions, where the deficit of solid angle is proportional to Newton constant and tension. Thus, we refer to them as conical backgrounds. In terms of the angular deficit value, we derive the perturbative expression for the scalar Green’s function and compute it to the leading order. With the use of this Green’s function we compute the renormalized vacuum expectation value of the scalar-field’s energy-momentum tensor. We make some general note on the linear-on-curvature part of the trace of even coefficients of Schwinger-deWitt expansion.


2003 ◽  
Vol 18 (12) ◽  
pp. 2093-2098 ◽  
Author(s):  
M. E. X. Guimarães ◽  
A. L. N. Oliveira

In this work we compute the vacuum expectation values of the energy-momentum tensor and the average value of a massive, charged scalar field in the presence of a magnetic flux cosmic string for both zero- and finite-temperature cases.


2007 ◽  
Vol 85 (8) ◽  
pp. 887-897 ◽  
Author(s):  
S I Kruglov

The generalized Dirac equation of the third order, describing particles with spin 1/2 and three mass states, is analyzed. We obtain the first-order generalized Dirac equation in the 24-dimensional matrix form. The mass and spin projection operators are found that extract solutions of the wave equation corresponding to pure spin states of particles. The density of the electromagnetic current is obtained, and minimal and nonminimal(anomalous) electromagnetic interactions of fermions are considered by introducing three phenomenological parameters. The Hamiltonian form of the first-order equation is obtained.PACS Nos.: 03.65.Pm, 11.10.Ef; 12.10.Kt


1991 ◽  
Vol 06 (18) ◽  
pp. 1679-1684
Author(s):  
W. S. L'YI ◽  
YOUNG-JAI PARK ◽  
KEE YONG KIM ◽  
YONGDUK KIM

Majorana fermion coupled to a 2-dimensional background gravitational field is investigated by employing the BRS quantization technique. Upon introduction of a quasicon-formal map ζ determined by the Beltrami differential h, the background gravitational field amazingly disappeared leaving just the free Majorana field ψ and ghosts b, c. In this way the vacuum expectation value of the energy-momentum tensor under the background gravitational field is explicitly computed.


Sign in / Sign up

Export Citation Format

Share Document