HELICITY CONSERVATION IN COULOMB SCATTERING OF THE DIRAC FIELD IN THE EXPANDING DE SITTER SPACE

2011 ◽  
Vol 26 (24) ◽  
pp. 4217-4238 ◽  
Author(s):  
NISTOR NICOLAEVICI

We comment on a previous calculation1 for the scattering amplitude for the Dirac field in an external Coulomb potential in the expanding de Sitter space. The result implies that for initial and final fermion states with identical momenta |pi|=|pf| the helicity of the particle is conserved. We make a classical analysis of the scattering problem in the small scattering angle approximation using the Bargmann–Michel–Telegdi equation and show that helicity conservation also manifests in the classical case. We also show that in Minkowski space there is a complete agreement between the classical and quantum polarization angle of the scattered particle.

2018 ◽  
Vol 33 (08) ◽  
pp. 1830007 ◽  
Author(s):  
Ion I. Cotaescu

The properties of the covariant quantum fields on de Sitter space–times are investigated focusing on the isometry generators and Casimir operators in order to establish the equivalence among the covariant representations and the unitary irreducible ones of the de Sitter isometry group. For the Dirac quantum field, it is shown that the spinor covariant representation, transforming the Dirac field under de Sitter isometries, is equivalent with a direct sum of two unitary irreducible representations of the [Formula: see text] group, transforming alike the particle and antiparticle field operators in momentum representation. Their basis generators and Casimir operators are written down finding that the covariant representations are equivalent with unitary irreducible ones from the principal series whose canonical weights are determined by the fermion mass and spin.


2008 ◽  
Vol 23 (07) ◽  
pp. 1075-1087 ◽  
Author(s):  
COSMIN CRUCEAN ◽  
RADU RACOCEANU

The reduction formulas for Dirac fermions is derived using the exact solutions of free Dirac equation on de Sitter space–time. In the framework of the perturbation theory one studies the Green functions and derives the scattering amplitude in the first orders of perturbation theory.


2008 ◽  
Vol 23 (09) ◽  
pp. 1351-1359 ◽  
Author(s):  
ION I. COTĂESCU ◽  
COSMIN CRUCEAN

The lowest order contribution of the amplitude of Dirac–Coulomb scattering in de Sitter space–time is calculated assuming that the initial and final states of the Dirac field are described by exact solutions of the free Dirac equation on de Sitter space–time with a given energy and helicity. We find that the total energy is conserved in the scattering process.


Author(s):  
Saraswati Devi ◽  
Rittick Roy ◽  
Sayan Chakrabarti

Abstract We find the low lying quasinormal mode frequencies of the recently proposed novel four dimensional Gauss–Bonnet de Sitter black holes for scalar, electromagnetic and Dirac field perturbations using the third order WKB approximation as well as Padé approximation, as an improvement over WKB. We figure out the effect of the Gauss–Bonnet coupling $$\alpha $$α and the cosmological constant $$\Lambda $$Λ on the real and imaginary parts of the QNM frequencies. We also study the greybody factors and eikonal limits in the above background for all three different types of perturbations.


2001 ◽  
Vol 16 (16) ◽  
pp. 2841-2857 ◽  
Author(s):  
T. MURATA ◽  
K. TSUNODA ◽  
K. YAMAMOTO

Motivated by a recent work by Terashima (Phys. Rev.D60, 084001), we revisit the fluctuation-dissipation (FD) relation between the dissipative coefficient of a detector and the vacuum noise of fields in curved space–time. In an explicit manner we show that the dissipative coefficient obtained from classical equations of motion of the detector and the scalar (or Dirac) field satisfies the FD relation associated with the vacuum noise of the field, which demonstrates that Terashima's prescription works properly in the N-dimensional de Sitter space–time. This practice is useful not only to reconfirm the validity of the use of the retarded Green function to evaluate the dissipative coefficient from the classical equations of motion but also to understand why the derivation works properly, which is discussed in connection with previous investigations on the basis of the Kubo–Martin–Schwinger (KMS) condition. Possible application to black hole space–time is also briefly discussed.


2004 ◽  
Vol 68 (1) ◽  
pp. 15-18 ◽  
Author(s):  
S Rouhani ◽  
M. V Takook

2012 ◽  
Vol 29 (19) ◽  
pp. 194002 ◽  
Author(s):  
Óscar J C Dias ◽  
Gary T Horowitz ◽  
Jorge E Santos
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document