ORIENTIFOLD STRING VACUA AND STRINGS AT THE LHC

2011 ◽  
Vol 26 (27n28) ◽  
pp. 4687-4701
Author(s):  
DIETER LÜST

We consider extensions of the Standard Model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundamental string mass scale is in the TeV range and the theory is weakly coupled, we discuss possible signals of string physics at the Large Hadron Collider (LHC).

2009 ◽  
Vol 24 (31) ◽  
pp. 2481-2490 ◽  
Author(s):  
LUIS A. ANCHORDOQUI ◽  
HAIM GOLDBERG ◽  
DIETER LÜST ◽  
STEPHAN STIEBERGER ◽  
TOMASZ R. TAYLOR

We consider extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundamental string mass scale is in the TeV range and the theory is weakly coupled, we review possible signals of string physics at the Large Hadron Collider.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Alexandre Carvunis ◽  
Diego Guadagnoli ◽  
Méril Reboud ◽  
Peter Stangl

Abstract We present a model of composite Dark Matter (DM), in which a new QCD-like confining “hypercolor” sector generates naturally stable hyperbaryons as DM candidates and at the same time provides mass to new weakly coupled gauge bosons H that serve as DM mediators, coupling the hyperbaryons to the Standard Model (SM) fermions. By an appropriate choice of the H gauge symmetry as a horizontal SU(2)h SM flavor symmetry, we show how the H gauge bosons can be identified with the horizontal gauge bosons recently put forward as an explanation for discrepancies in rare B-meson decays. We find that the mass scale of the H gauge bosons suggested by the DM phenomenology intriguingly agrees with the one needed to explain the rare B-decay discrepancies.


2012 ◽  
Vol 2012 ◽  
pp. 1-43 ◽  
Author(s):  
Luis Alfredo Anchordoqui

We outline the basic setting of theU(3)C×Sp(1)L×U(1)L×U(1)Rgauge theory and review the associated phenomenological aspects related to experimental searches for new physics at hadron colliders. In this construction, there are two massiveZ′-gauge bosons, which can be naturally associated with baryon numberB  and  B-L  (Lbeing lepton number). We discuss the potential signals which may be accessible at the Tevatron and at the Large Hadron Collider (LHC). In particular, we provide the relevant cross sections for the production ofZ′-gauge bosons in the TeV region, leading to predictions that are within reach of the present or the next LHC run. After that we direct attention to embedding the gauge theory into the framework of string theory. We consider extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundamental string mass scale is in the TeV range and the theory is weakly coupled, we explore the LHC discovery potential for Regge excitations.


2008 ◽  
Vol 23 (32) ◽  
pp. 5117-5136 ◽  
Author(s):  
MONICA PEPE ALTARELLI ◽  
FREDERIC TEUBERT

LHCb is a dedicated detector for b physics at the LHC (Large Hadron Collider). In this paper we present a concise review of the detector design and performance together with the main physics goals and their relevance for a precise test of the Standard Model and search of New Physics beyond it.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Isabell Engeln ◽  
Pedro Ferreira ◽  
M. Margarete Mühlleitner ◽  
Rui Santos ◽  
Jonas Wittbrodt

Abstract We discuss the dark phases of the Next-to-2-Higgs Doublet model. The model is an extension of the Standard Model with an extra doublet and an extra singlet that has four distinct CP-conserving phases, three of which provide dark matter candidates. We discuss in detail the vacuum structure of the different phases and the issue of stability at tree-level of each phase. Taking into account the most relevant experimental and theoretical constraints, we found that there are combinations of measurements at the Large Hadron Collider that could single out a specific phase. The measurement of h125 → γγ together with the discovery of a new scalar with specific rates to τ+τ− or γγ could exclude some phases and point to a specific phase.


2009 ◽  
Vol 24 (01) ◽  
pp. 1-15 ◽  
Author(s):  
GUSTAAF BROOIJMANS

Experiments will soon start taking data at CERN's Large Hadron Collider (LHC) with high expectations for discovery of new physics phenomena. Indeed, the LHC's unprecedented center-of-mass energy will allow the experiments to probe an energy regime where the standard model is known to break down. Here, the experiments' capability to observe new resonances in various channels is reviewed.


Author(s):  
Martino Borsato ◽  
Xabier Cid-Vidal ◽  
Yuhsin Tsai ◽  
Carlos Vázquez Sierra ◽  
Jose Francisco Zurita ◽  
...  

Abstract In this paper, we describe the potential of the LHCb experiment to detect Stealth physics. This refers to dynamics beyond the Standard Model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.


2018 ◽  
Vol 33 (03) ◽  
pp. 1850024 ◽  
Author(s):  
Ernest Ma ◽  
Diego Restrepo ◽  
Óscar Zapata

The well-known leptonic U(1) symmetry of the Standard Model (SM) of quarks and leptons is extended to include a number of new fermions and scalars. The resulting theory has an invisible QCD axion (thereby solving the strong CP problem), a candidate for weak-scale dark matter (DM), as well as radiative neutrino masses. A possible key connection is a color-triplet scalar, which may be produced and detected at the Large Hadron Collider.


Sign in / Sign up

Export Citation Format

Share Document