scholarly journals SCALAR CASIMIR EFFECT BETWEEN TWO CONCENTRIC SPHERES

2012 ◽  
Vol 27 (16) ◽  
pp. 1250082 ◽  
Author(s):  
MUSTAFA ÖZCAN

The Casimir effect giving rise to an attractive force between the closely spaced two concentric spheres that confine the massless scalar field is calculated by using a direct mode summation with contour integration in the complex plane of eigenfrequencies. We developed a new approach appropriate for the calculation of the Casimir energy for spherical boundary conditions. The Casimir energy for a massless scalar field between the closely spaced two concentric spheres coincides with the Casimir energy of the parallel plates for a massless scalar field in the limit when the dimensionless parameter η, ([Formula: see text] where a(b) is inner (outer) radius of sphere), goes to zero. The efficiency of new approach is demonstrated by calculation of the Casimir energy for a massless scalar field between the closely spaced two concentric half spheres.

2019 ◽  
Vol 34 (16) ◽  
pp. 1950125
Author(s):  
V. B. Bezerra ◽  
J. M. Toledo

We calculate thermal corrections to the Casimir energy of a massless scalar field in the Kerr black hole surrounded by quintessence, taking into account the metrics derived by Ghosh [S. G. Ghosh, Eur. Phys. J. C 76, 222 (2016)] and Toshmatov et al. [B. Toshmatov, Z. Stuchlík and B. Ahmedov, Eur. Phys. J. Plus 132, 98 (2017)]. We compare both results and show that they are almost the same, except very close to the horizons. At [Formula: see text], equatorial plane, the results are the same, as should be expected, due to the fact that the metrics coincide in this region.


2016 ◽  
Vol 25 (09) ◽  
pp. 1641018 ◽  
Author(s):  
V. B. Bezerra ◽  
H. F. Mota ◽  
C. R. Muniz

We consider the Casimir effect, by calculating the Casimir energy and its corrections for nonzero temperatures, of a massless scalar field in the spacetime with topology [Formula: see text] (Einstein universe) containing an idealized cosmic string. The obtained results confirm the role played by the identifications imposed on the quantum field by boundary conditions arising from the topology of the gravitational field under consideration and illustrate a realization of a gravitational analogue of the Casimir effect. In this backgorund, we show that the vacuum energy can be written as a term which corresponds to the vacuum energy of the massless scalar field in the Einstein universe added by another term that formally corresponds to the vacuum energy of the electromagnetic field in the Einstein universe, multiplied by a parameter associated with the presence of the cosmic string, namely, [Formula: see text], where [Formula: see text] is a constant related to the cosmic string tension, [Formula: see text].


2017 ◽  
Vol 32 (21) ◽  
pp. 1775001 ◽  
Author(s):  
Bobir Toshmatov ◽  
Zdeněk Stuchlík ◽  
Bobomurat Ahmedov

This comment is devoted to the recalculation of the Casimir energy of a massless scalar field in the Kerr black hole surrounded by quintessence derived in [B. Toshmatov, Z. Stuchlík and B. Ahmedov, Eur. Phys. J. Plus 132, 98 (2017)] and its comparison with the results recently obtained in [V. B. Bezerra, M. S. Cunha, L. F. F. Freitas and C. R. Muniz, Mod. Phys. Lett. A 32, 1750005 (2017)] in the spacetime [S. G. Ghosh, Eur. Phys. J. C 76, 222 (2016)]. We have shown that in the more realistic spacetime which does not have the failures illustrated here, the Casimir energy is significantly bigger than that derived in [V. B. Bezerra, M. S. Cunha, L. F. F. Freitas and C. R. Muniz, Mod. Phys. Lett. A 32, 1750005 (2017)], and the difference becomes crucial especially in the regions of near horizons of the spacetime.


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
V. B. Bezerra ◽  
C. R. Muniz ◽  
H. S. Vieira

Abstract We investigate the Casimir effect of the massless scalar field in a cavity formed by ideal parallel plates in the spacetime generated by a rotating axially symmetric distribution of vector or scalar (tensor) unparticles, around which the plates orbit. The presence of the unparticles is incorporated to the background by means of a correction to the Kerr solution of the Einstein equations, in which the characteristic length and the scale dimension associated to the unparticle theory are taken into account. We show that the Casimir energy density depends also on these parameters. The analysis of the “ungravity” limit for the Casimir energy density, in which the characteristic length is very large in comparison to the horizon radius, is made, too. At zero temperature, we show that such a limit implies the instability of the system, since the Casimir energy density becomes an imaginary quantity. The general result is compared to the current terrestrial experiments of the Casimir effect. Thermal corrections also are investigated and the ungravity limit again examined, with the aforementioned instability disappearing at high temperatures.


2016 ◽  
Vol 32 (01) ◽  
pp. 1750005 ◽  
Author(s):  
V. B. Bezerra ◽  
M. S. Cunha ◽  
L. F. F. Freitas ◽  
C. R. Muniz ◽  
M. O. Tahim

We calculate the Casimir energy of a massless scalar field in a cavity formed by nearby parallel plates orbiting a rotating spherical body surrounded by quintessence, investigating the influence of the gravitational field on that energy, at zero temperature. This influence includes the effects due to the spacetime dragging caused by the source rotation as well as those ones due to the quintessence. We show that the energy depends on all the involved parameters, as source mass, angular momentum and quintessence state parameter, for any radial coordinate and polar angle. We show that at the north pole the Casimir energy is not influenced by the quintessential matter. At the equatorial plane, when the quintessence is canceled, the result obtained in the literature is recovered. Finally, constraints in the quintessence parameters are obtained from the uncertainty in the current measurements of Casimir effect.


Author(s):  
A. C. L. Santos ◽  
C. R. Muniz ◽  
L. T. Oliveira

In this paper, we investigate the role of gravito-inertial effects on the Casimir energy of a massless scalar field confined between two parallel plates orbiting a static and zero tidal Schwarzschild-like wormhole, at zero temperature. Firstly, we obtain the metric in isotropic coordinates, finding the allowed angular velocities and the circular orbit radii for a material particle as well as for the photon. Following this, we compute the changes induced by both gravity and rotation of the plates in the energy density of the quantum vacuum fluctuations associated to the scalar field, in the zero tidal approximation inside the cavity. Finally, the Casimir energy obtained for some these wormholes are graphically compared between themselves and also with those ones related to an Ellis wormhole as well as to a Schwarzschild black hole. With this, the gravito-inertial effects on the quantum vacuum fluctuations analyzed in this work allow to recognize and identify both the geometry and topology of the spacetime associated to each one of these objects.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
C. R Muniz ◽  
V. B. Bezerra ◽  
J. M. Toledo

AbstractWe investigate the Casimir effect between parallel plates placed along a circular trajectory around the rotating Damour–Solodkhin (D–S) and Teo wormholes. This is made through the calculation of the renormalized quantum vacuum energy density of a massless scalar field obeying the Dirichlet boundary conditions, initially at zero temperature. We use the zero tidal approximation inside the cavity. Then, we compare our results with those ones previously obtained in the literature with respect to the Kerr black hole. We also compare the computed Casimir energy density in a static D–S wormhole spacetime with that one recently found for a static Ellis wormhole. In what follows, we investigate the effect around the rotating Teo wormhole by calculating the Casimir energy density between the plates, and compare it with the same quantities obtained previously. Finally, we investigate the phenomenon at finite temperature, obtaining some Casimir thermodynamic quantities in the rotating D–S wormhole spacetime, comparing them with the ones valid in the Kerr black hole spacetime. With this, the ways as gravito-inertial and frame dragging effects influence the vacuum quantum fluctuations inside the Casimir apparatus allows to distinct among the different types of rotating wormholes and black holes.


2012 ◽  
Vol 27 (18) ◽  
pp. 1250094 ◽  
Author(s):  
MUSTAFA ÖZCAN

The Casimir energy for a massless scalar field between the closely spaced two concentric D-dimensional (for D>3) spheres is calculated by using the mode summation with contour integration in the complex plane of eigenfrequencies and the generalized Abel–Plana formula for evenly spaced eigenfrequency at large argument. The sign of the Casimir energy between closely spaced two concentric D-dimensional spheres for a massless scalar field satisfying the Dirichlet boundary conditions is strictly negative. The Casimir energy between (D-1)-dimensional surfaces, close to each other is regarded as interesting both by itself and as the key to describing of stability of the attractive Casimir force.


2017 ◽  
Vol 32 (24) ◽  
pp. 1750128 ◽  
Author(s):  
M. A. Valuyan

In this paper, the first-order radiative correction to the Casimir energy for a massive scalar field in the [Formula: see text] theory on a spherical surface with [Formula: see text] topology was calculated. In common methods for calculating the radiative correction to the Casimir energy, the counter-terms related to free theory are used. However, in this study, by using a systematic perturbation expansion, the obtained counter-terms in renormalization program were automatically position-dependent. We maintained that this dependency was permitted, reflecting the effects of the boundary conditions imposed or background space in the problem. Additionally, along with the renormalization program, a supplementary regularization technique that we named Box Subtraction Scheme (BSS) was performed. This scheme presents a useful method for the regularization of divergences, providing a situation that the infinities would be removed spontaneously without any ambiguity. Analysis of the necessary limits of the obtained results for the Casimir energy of the massive and massless scalar field confirmed the appropriate and reasonable consistency of the answers.


Sign in / Sign up

Export Citation Format

Share Document