scholarly journals TURBULENT INSTABILITY OF ANTI-DE SITTER SPACE–TIME

2013 ◽  
Vol 28 (22n23) ◽  
pp. 1340020 ◽  
Author(s):  
MACIEJ MALIBORSKI ◽  
ANDRZEJ ROSTWOROWSKI

In these lecture notes, we discuss recently conjectured instability of anti-de Sitter space, resulting in gravitational collapse of a large class of arbitrarily small initial perturbations. We uncover the technical details used in the numerical study of spherically symmetric Einstein-massless scalar field system with negative cosmological constant that led to the conjectured instability.

2021 ◽  
Vol 18 (02) ◽  
pp. 311-341
Author(s):  
João L. Costa ◽  
Filipe C. Mena

We consider a characteristic initial value problem, with initial data given on a future null cone, for the Einstein (massless) scalar field system with a positive cosmological constant, in Bondi coordinates. We prove that, for small data, this system has a unique global classical solution which is causally geodesically complete to the future and decays polynomially in radius and exponentially in Bondi time, approaching the de Sitter solution.


1998 ◽  
Vol 13 (08) ◽  
pp. 1201-1211 ◽  
Author(s):  
Y. ENGINER ◽  
M. HORTAÇSU ◽  
N. ÖZDEMIR

Quantum fluctuations for a massless scalar field in the background metric of spherical implusive gravitational waves propagating through Minkowski and de Sitter spaces are investigated. It is shown that there exist finite fluctuations for de Sitter space.


2015 ◽  
Vol 24 (14) ◽  
pp. 1550104 ◽  
Author(s):  
Sharmanthie Fernando

The purpose of this paper is to study quasinormal modes (QNMs) of a regular black hole with a cosmological constant due to scalar perturbations. A detailed study of QNMs frequencies for the massless scalar field was done by varying the parameters of the theory such as mass, magnetic charge, cosmological constant and the spherical harmonic index. We have employed the sixth-order WKB approximation to compute the QNMs frequencies. We have also proved analytically that the [Formula: see text] mode for the massless field reaches a constant value at late times. We have approximated the near-extreme regular-de Sitter (dS) black hole potential with the Pöschl–Teller potential to obtain exact frequencies. The null geodesics of the regular-de Sitter black hole is employed to describe the QNMs frequencies at the eikonal limit ([Formula: see text]).


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Samim Akhtar ◽  
Sayantan Choudhury ◽  
Satyaki Chowdhury ◽  
Debopam Goswami ◽  
Sudhakar Panda ◽  
...  

Abstract In this work, our prime objective is to study non-locality and long range effect of two body correlation using quantum entanglement from various information theoretic measure in the static patch of de Sitter space using a two body Open Quantum System (OQS). The OQS is described by a system of two entangled atoms, surrounded by a thermal bath, which is modelled by a massless probe scalar field. Firstly, we partially trace over the bath field and construct the Gorini Kossakowski Sudarshan Lindblad (GSKL) master equation, which describes the time evolution of the reduced subsystem density matrix. This GSKL master equation is characterized by two components, these are-Spin chain interaction Hamiltonian and the Lindbladian. To fix the form of both of them, we compute the Wightman functions for probe massless scalar field. Using this result alongwith the large time equilibrium behaviour we obtain the analytical solution for reduced density matrix. Further using this solution we evaluate various entanglement measures, namely Von-Neumann entropy, R$$e'$$e′nyi entropy, logarithmic negativity, entanglement of formation, concurrence and quantum discord for the two atomic subsystem on the static patch of De-Sitter space. Finally, we have studied violation of Bell-CHSH inequality, which is the key ingredient to study non-locality in primordial cosmology.


2015 ◽  
Vol 30 (11) ◽  
pp. 1550057 ◽  
Author(s):  
Sharmanthie Fernando

In this paper, we have studied a black hole in de Sitter space which has a conformally coupled scalar field in the background. This black hole is also known as the MTZ black hole. We have obtained exact values for the quasi-normal mode (QNM) frequencies under massless scalar field perturbations. We have demonstrated that when the black hole is near-extremal, that the wave equation for the massless scalar field simplifies to a Schrödinger type equation with the well-known Pöschl–Teller potential. We have also used sixth-order WKB approximation to compute QNM frequencies to compare with exact values obtained via the Pöschl–Teller method for comparison. As an application, we have obtained the area spectrum using modified Hods approach and show that it is equally spaced.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 186
Author(s):  
Mercedes Martín-Benito ◽  
Rita B. Neves

We provide an analytical solution to the quantum dynamics of a flat Friedmann-Lemaître- Robertson-Walker model with a massless scalar field in the presence of a small and positive cosmological constant, in the context of Loop Quantum Cosmology. We use a perturbative treatment with respect to the model without a cosmological constant, which is exactly solvable. Our solution is approximate, but it is precisely valid at the high curvature regime where quantum gravity corrections are important. We compute explicitly the evolution of the expectation value of the volume. For semiclassical states characterized by a Gaussian spectral profile, the introduction of a positive cosmological constant displaces the bounce of the solvable model to lower volumes and to higher values of the scalar field. These displacements are state dependent, and in particular, they depend on the peak of the Gaussian profile, which measures the momentum of the scalar field. Moreover, for those semiclassical states, the bounce remains symmetric, as in the vanishing cosmological constant case. However, we show that the behavior of the volume is more intricate for generic states, leading in general to a non-symmetric bounce.


2007 ◽  
Vol 22 (24) ◽  
pp. 4451-4465 ◽  
Author(s):  
MOLIN LIU ◽  
HONGYA LIU ◽  
CHUNXIAO WANG ◽  
YONGLI PING

The Nariai black hole, whose two horizons are lying close to each other, is an extreme and important case in the research of black hole. In this paper we study the evolution of a massless scalar field scattered around in 5D Schwarzschild–de Sitter black string space. Using the method shown by Brevik and Simonsen (2001) we solve the scalar field equation as a boundary value problem, where real boundary condition is employed. Then with convenient replacement of the 5D continuous potential by square barrier, the reflection and transmission coefficients (R, T) are obtained. At last, we also compare the coefficients with the usual 4D counterpart.


Sign in / Sign up

Export Citation Format

Share Document