scholarly journals Quons in a quantum dissipative system

2016 ◽  
Vol 31 (08) ◽  
pp. 1650033 ◽  
Author(s):  
Taejin Lee

String theory proves to be an imperative tool to explore the critical behavior of the quantum dissipative system. We discuss the quantum particles moving in two dimensions, in the presence of a uniform magnetic field, subject to a periodic potential and a dissipative force, which are described by the dissipative Wannier–Azbel–Hofstadter (DWAH) model. Using string theory formulation of the model, we find that the elementary excitations of the system at the generic points of the off-critical regions, in the zero temperature limit are quons, which satisfy [Formula: see text]-deformed statistics.

2009 ◽  
Vol 24 (32) ◽  
pp. 6141-6156 ◽  
Author(s):  
TAEJIN LEE

We study the dualities of the quantum dissipative Hofstadter system which describes particles moving in two dimensions, subject to a uniform magnetic field, a periodic potential and a dissipative force. Using the string theory formulation, we show that the system has two kinds of dualities. The duality, previously known as the exact duality in the literature is shown to correspond to a subgroup of the T-dual symmetry group unbroken by the periodic boundary potential in string theory. The other duality is a particle–kink duality in the noncommutative open string theory which is a generalized Schmid duality in the presence of the uniform magnetic field. The kinks of the dissipative Hofstadter model are found to be noncommutative objects. The particle–kink duality, which is called previously the approximate duality, is shown to be also exact. In contrast to the previous derivation, which is based on the Coulomb gas expansion of the partition function and asserts that the duality holds only approximately in the regime of strong magnetic field, the string theory formulation proves that duality holds always exactly in the off-critical regions where the periodic potential becomes strong, regardless of the strength of the magnetic field. The dualities of the DHM may also be useful for studying the rolling tachyon in string theory in the presence of the Neveu–Schwarz (NS) B-field, since both DHM and rolling tachyon in the presence of NS B-field are described by the same action.


2007 ◽  
Vol 99 (26) ◽  
Author(s):  
P. M. Walmsley ◽  
A. I. Golov ◽  
H. E. Hall ◽  
A. A. Levchenko ◽  
W. F. Vinen

2021 ◽  
Vol 119 (3) ◽  
pp. 033502
Author(s):  
Paul G. Baity ◽  
Dmytro A. Bozhko ◽  
Rair Macêdo ◽  
William Smith ◽  
Rory C. Holland ◽  
...  

1989 ◽  
Vol 04 (11) ◽  
pp. 1033-1041 ◽  
Author(s):  
SUMIT R. DAS ◽  
SATCHIDANANDA NAIK ◽  
SPENTA R. WADIA

We discuss the space-time interpretation of bosonic string theories, which involve d scalar fields coupled to gravity in two dimensions, with a proper quantization of the world-sheet metric. We show that for d>25, the theory cannot describe string modes consistently coupled to each other. For d=25 this is possible; however, in this case the Liouville mode acts as an extra timelike variable and one really has a string moving in 26-dimensional space-time with a Lorentzian signature. By analyzing such a string theory in background fields, we show that the d=25 theory possesses the full 26-dimensional general covariance.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Autti ◽  
S. L. Ahlstrom ◽  
R. P. Haley ◽  
A. Jennings ◽  
G. R. Pickett ◽  
...  

Abstract The ground state of a fermionic condensate is well protected against perturbations in the presence of an isotropic gap. Regions of gap suppression, surfaces and vortex cores which host Andreev-bound states, seemingly lift that strict protection. Here we show that in superfluid 3He the role of bound states is more subtle: when a macroscopic object moves in the superfluid at velocities exceeding the Landau critical velocity, little to no bulk pair breaking takes place, while the damping observed originates from the bound states covering the moving object. We identify two separate timescales that govern the bound state dynamics, one of them much longer than theoretically anticipated, and show that the bound states do not interact with bulk excitations.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Wenhe Cai ◽  
Kang-le Li ◽  
Si-wen Li

Abstract Using the Witten–Sakai–Sugimoto model in the D0–D4 background, we holographically compute the vacuum decay rate of the Schwinger effect in this model. Our calculation contains the influence of the D0-brane density which could be identified as the $$\theta $$θ angle or chiral potential in QCD. Under the strong electromagnetic fields, the instability appears due to the creation of quark–antiquark pairs and the associated decay rate can be obtained by evaluating the imaginary part of the effective Euler–Heisenberg action which is identified as the action of the probe brane with a constant electromagnetic field. In the bubble D0–D4 configuration, we find the decay rate decreases when the $$\theta $$θ angle increases since the vacuum becomes heavier in the present of the glue condensate in this system. And the decay rate matches to the result in the black D0–D4 configuration at zero temperature limit according to our calculations. In this sense, the Hawking–Page transition of this model could be consistently interpreted as the confined/deconfined phase transition. Additionally there is another instability from the D0-brane itself in this system and we suggest that this instability reflects to the vacuum decay triggered by the $$\theta $$θ angle as it is known in the $$\theta $$θ-dependent QCD.


Sign in / Sign up

Export Citation Format

Share Document