scholarly journals Mass spectra and decays of ground and orbitally excited cb̄ states in nonrelativistic quark model

2017 ◽  
Vol 32 (04) ◽  
pp. 1750021 ◽  
Author(s):  
Antony Prakash Monteiro ◽  
Manjunath Bhat ◽  
K. B. Vijaya Kumar

The complete spectrum of [Formula: see text] states is obtained in a phenomenological nonrelativistic quark model (NRQM), which consists of a confinement potential and one gluon exchange potential (OGEP) as effective quark–antiquark potential. We make predictions for the radiative decay (E1 and M1) widths and weak decay widths of [Formula: see text] states in the framework of NRQM formalism.

2017 ◽  
Vol 26 (06) ◽  
pp. 1750037 ◽  
Author(s):  
Manjunath Bhat ◽  
Antony Prakash Monteiro ◽  
K. B. Vijaya Kumar

The complete spectrum of [Formula: see text] states is obtained in a phenomenological nonrelativistic quark model (NRQM), which consists of a confinement potential and one gluon exchange potential (OGEP) as effective quark–antiquark potential with coupled channel effects. We make predictions for the radiative decay (E1 and M1) widths and weak decay widths of [Formula: see text] states in the framework of NRQM formalism.


2017 ◽  
Vol 26 (07) ◽  
pp. 1750049 ◽  
Author(s):  
Zahra Ghalenovi ◽  
Masoumeh Moazzen

Masses and magnetic moments of [Formula: see text] and [Formula: see text] resonances are calculated employing the hyperspherical approach. We extend our scheme to obtain the helicity amplitudes and transition magnetic moments of the [Formula: see text] process. We also compute the radiative decay widths and branching ratios of [Formula: see text] baryons. A comparison of our results with the predictions obtained in recent theoretical models is also presented.


2012 ◽  
Vol 27 (27) ◽  
pp. 1250153 ◽  
Author(s):  
B. EAKINS ◽  
W. ROBERTS

The heavy diquark symmetry (HDS) of doubly heavy baryons (DHBs) provides new insights into the spectroscopy of these hadrons. We derive the consequences of this symmetry for the mass spectra and the decay widths of DHBs. We compare these symmetry constraints to results from a nonrelativistic quark model for the mass spectra and results from the 3P0 model for strong decays. The quark model we implement was not constructed with these symmetries and contains interactions which explicitly break HDS. Nevertheless these symmetries emerge. We argue that the 3P0 model and any other model for strong transitions which employs a spectator assumption explicitly respects HDS. We also explore the possibility of treating the strange quark as a heavy quark and apply these ideas to Ξ, Ξc and Ξb baryons.


1996 ◽  
Vol 11 (32) ◽  
pp. 5685-5700 ◽  
Author(s):  
A.R. PANDA ◽  
R.K. SAHOO

Radiative decays of baryons are considered in a field theoretic quark model of composite hadrons where the translationally invariant SU (6) hadron states are described by constituent quark field operators and harmonic oscillator wave functions. The constituent quark field operators of the model satisfying the equal time algebra are also Lorentz-boosted through a spin rotation to describe hadrons in motion. The model, like its earlier success in describing the different hadronic phenomena, in the present investigation without any free parameters, obtains the radiative decay widths and helicity amplitudes in reasonable agreement with other theoretical calculations as well as with the available experimental measurements.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Hluf Negash ◽  
Shashank Bhatnagar

We study the radiative decay widths of vector quarkonia for the process of J/ψ(nS)→ηc(nS)γ and Υ(nS)→ηb(nS)γ (for principal quantum numbers n=1,2,3) in the framework of Bethe-Salpeter equation under the covariant instantaneous ansatz using a 4×4 form of BSE. The parameters of the framework were determined by a fit to the mass spectrum of ground states of pseudoscalar and vector quarkonia, such as ηc, ηb, J/ψ, and Υ. These input parameters so fixed were found to give good agreements with data on mass spectra of ground and excited states of pseudoscalar and vector quarkonia, leptonic decay constants of pseudoscalar and vector quarkonia, two-photon decays, and two-gluon decays of pseudoscalar quarkonia in our recent paper. With these input parameters so fixed, the radiative decay widths of ground (1S) and excited (2S,3S) states of heavy vector quarkonia (J/Ψ and Υ) are calculated and found to be in reasonable agreement with data.


2012 ◽  
Vol 27 (03n04) ◽  
pp. 1250011 ◽  
Author(s):  
BHAGHYESH ◽  
K. B. VIJAYA KUMAR ◽  
YONG-LIANG MA

Having succeeded in predicting the S wave spectra and decays of [Formula: see text] and [Formula: see text] mesons, Bhaghyesh, K. B. Vijaya Kumar and A. P. Monteiro, J. Phys. G: Nucl. Part. Phys.38, 085001 (2011), in this article, we apply our nonrelativistic quark model to calculate the spectra and decays of the orbitally excited states (P- and D-waves) of heavy quarkonia. The full [Formula: see text] potential used in our model consists of a Hulthen potential and a confining linear potential. The spin hyperfine, spin-orbit and tensor interactions are introduced to obtain the masses of the P- and D-wave states. The three-dimensional harmonic oscillator wave function is employed as a trial wave function to obtain the mass spectra. The model parameters and the wave function that reproduce the mass spectra of [Formula: see text] and [Formula: see text] mesons are used to investigate their decay properties. The two-photon decay widths, two-gluon decay widths and E1 radiative decay widths are calculated. The obtained values are compared with the experimental results and those obtained from other theoretical models.


2001 ◽  
Vol 16 (27) ◽  
pp. 1785-1794 ◽  
Author(s):  
HAKAN ÇIFTCI ◽  
HÜSEYIN KORU

In this paper we have calculated transition magnetic moments and radiative decay widths of light and heavy mesons using a relativistic potential model of independent quarks with its parameters determined from a fit to the mass of ground state mesons in the strange, charm and bottom flavor sectors. The results are in agreement with the experimental data.


1999 ◽  
Vol 14 (11) ◽  
pp. 1759-1768 ◽  
Author(s):  
R. K. DAS ◽  
A. R. PANDA ◽  
R. K. SAHOO

Radiative decays of heavy vector mesons are considered in the lowest order in a field-theoretic quark model of composite hadrons. The translationally invariant hadron states required in such a calculation are described by constituent quark field operators satisfying equal time algebra and harmonic oscillator wave functions. The constituent quark field operators are Lorentz-boosted through a spin rotation to describe hadrons in motion. The model, like its earlier success in describing different hadronic phenomena, in the present investigation without any free parameters also obtains the radiative decay widths and transition moments in reasonable agreement with other theoretical calculations as well as experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document