scholarly journals Studies on Polyakov and Nambu–Goto random surface path integrals on QCD(SU(∞)): Interquark potential and phenomenological scattering amplitudes

2017 ◽  
Vol 32 (05) ◽  
pp. 1750030
Author(s):  
Luiz C. L. botelho

We present new path integral studies on the Polyakov noncritical and Nambu–Goto critical string theories and their applications to [Formula: see text] interquark potential. We also evaluate the long distance asymptotic behavior of the interquark potential on the Nambu–Goto string theory with an extrinsic term in Polyakov’s string at [Formula: see text]. We also propose an alternative and a new view to covariant Polyakov’s string path integral with a fourth-order two-dimensional quantum gravity, is an effective stringy description for [Formula: see text] at the deep infrared region.

1989 ◽  
Vol 03 (08) ◽  
pp. 605-610 ◽  
Author(s):  
YOSHIHISA ENOMOTO ◽  
KYOZI KAWASAKI

We study the asymptotic behavior of the ordering process of quenched systems with long-distance hopping. Based on a newly proposed computer model of such systems, two dimensional simulations are performed to investigate the scaling law for the scattering structure function.


1998 ◽  
Vol 13 (21) ◽  
pp. 3723-3747 ◽  
Author(s):  
ANDERS KRISTOFFERSEN ◽  
STEFAN MASHKEVICH ◽  
JAN MYRHEM ◽  
KÅRE OLAUSSEN

We have computed by a Monte Carlo method the fourth virial coefficient of free anyons, as a function of the statistics angle θ. It can be fitted by a four term Fourier series, in which two coefficients are fixed by the known perturbative results at the boson and fermion points. We compute partition functions by means of path integrals, which we represent diagramatically in such a way that the connected diagrams give the cluster coefficients. This provides a general proof that all cluster and virial coefficients are finite. We give explicit polynomial approximations for all path integral contributions to all cluster coefficients, implying that only the second virial coefficient is statistics dependent, as is the case for two-dimensional exclusion statistics. The assumption leading to these approximations is that the tree diagrams dominate and factorize.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Fridrich Valach ◽  
Donald R. Youmans

Abstract We give an interpretation of the holographic correspondence between two-dimensional BF theory on the punctured disk with gauge group PSL(2, ℝ) and Schwarzian quantum mechanics in terms of a Drinfeld-Sokolov reduction. The latter, in turn, is equivalent to the presence of certain edge states imposing a first class constraint on the model. The constrained path integral localizes over exceptional Virasoro coadjoint orbits. The reduced theory is governed by the Schwarzian action functional generating a Hamiltonian S1-action on the orbits. The partition function is given by a sum over topological sectors (corresponding to the exceptional orbits), each of which is computed by a formal Duistermaat-Heckman integral.


Author(s):  
Changyan Zhu ◽  
Chaoxia Wen ◽  
Cong Wang ◽  
Min Zhang ◽  
Yun Geng ◽  
...  

The efficient activation of the adsorbed N2 is the initial and crucial step in the electrochemical nitrogen reduction reaction (NRR) but remains a long-standing challenge. Attaching long-distance heterometal M and...


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ashoke Sen

Abstract In a recent paper, Balthazar, Rodriguez and Yin found remarkable agreement between the one instanton contribution to the scattering amplitudes of two dimensional string theory and those in the matrix model to the first subleading order. The comparison was carried out numerically by analytically continuing the external energies to imaginary values, since for real energies the string theory result diverges. We use insights from string field theory to give finite expressions for the string theory amplitudes for real energies. We also show analytically that the imaginary parts of the string theory amplitudes computed this way reproduce the full matrix model results for general scattering amplitudes involving multiple closed strings.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yiming Chen ◽  
Victor Gorbenko ◽  
Juan Maldacena

Abstract We consider two dimensional CFT states that are produced by a gravitational path integral.As a first case, we consider a state produced by Euclidean AdS2 evolution followed by flat space evolution. We use the fine grained entropy formula to explore the nature of the state. We find that the naive hyperbolic space geometry leads to a paradox. This is solved if we include a geometry that connects the bra with the ket, a bra-ket wormhole. The semiclassical Lorentzian interpretation leads to CFT state entangled with an expanding and collapsing Friedmann cosmology.As a second case, we consider a state produced by Lorentzian dS2 evolution, again followed by flat space evolution. The most naive geometry also leads to a similar paradox. We explore several possible bra-ket wormholes. The most obvious one leads to a badly divergent temperature. The most promising one also leads to a divergent temperature but by making a projection onto low energy states we find that it has features that look similar to the previous Euclidean case. In particular, the maximum entropy of an interval in the future is set by the de Sitter entropy.


A two-dimensional homogeneous random surface { y ( X )} is generated from another such surface { z ( X )} by a process of smoothing represented by y ( X ) = ∫ ∞ d u w ( u – X ) z ( u ), where w ( X ) is a deterministic weighting function satisfying certain conditions. The two-dimensional autocorrelation and spectral density functions of the smoothed surface { y ( X )} are calculated in terms of the corresponding functions of the reference surface { z ( X )} and the properties of the ‘footprint’ of the contact w ( X ). When the surfaces are Gaussian, the statistical properties of their peaks and summits are given by the continuous theory of surface roughness. If only sampled values of the surface height are available, there is a corresponding discrete theory. Provided that the discrete sampling interval is small enough, profile statistics calculated by the discrete theory should approach asymptotically those calculated by the continuous theory, but it is known that such asymptotic convergence may not occur in practice. For a smoothed surface { y ( X )} which is generated from a reference surface { z ( X )} by a ‘good’ footprint of finite area, it is shown in this paper that the expected asymptotic convergence does occur always, even if the reference surface is ideally white. For a footprint to be a good footprint, w ( X ) must be continuous and smooth enough that it can be differentiated twice everywhere, including at its edges. Sample calculations for three footprints, two of which are good footprints, illustrate the theory.


Author(s):  
Robert L. McMasters ◽  
Filippo de Monte ◽  
James V. Beck ◽  
Donald E. Amos

This paper provides a solution for two-dimensional heating over a rectangular region on a homogeneous plate. It has application to verification of numerical conduction codes as well as direct application for heating and cooling of electronic equipment. Additionally, it can be applied as a direct solution for the inverse heat conduction problem, most notably used in thermal protection systems for re-entry vehicles. The solutions used in this work are generated using Green’s functions. Two approaches are used which provide solutions for either semi-infinite plates or finite plates with isothermal conditions which are located a long distance from the heating. The methods are both efficient numerically and have extreme accuracy, which can be used to provide additional solution verification. The solutions have components that are shown to have physical significance. The extremely precise nature of analytical solutions allows them to be used as prime standards for their respective transient conduction cases. This extreme precision also allows an accurate calculation of heat flux by finite differences between two points of very close proximity which would not be possible with numerical solutions. This is particularly useful near heated surfaces and near corners. Similarly, sensitivity coefficients for parameter estimation problems can be calculated with extreme precision using this same technique. Another contribution of these solutions is the insight that they can bring. Important dimensionless groups are identified and their influence can be more readily seen than with numerical results. For linear problems, basic heating elements on plates, for example, can be solved to aid in understanding more complex cases. Furthermore these basic solutions can be superimposed both in time and space to obtain solutions for numerous other problems. This paper provides an analytical two-dimensional, transient solution for heating over a rectangular region on a homogeneous square plate. Several methods are available for the solution of such problems. One of the most common is the separation of variables (SOV) method. In the standard implementation of the SOV method, convergence can be slow and accuracy lacking. Another method of generating a solution to this problem makes use of time-partitioning which can produce accurate results. However, numerical integration may be required in these cases, which, in some ways, negates the advantages offered by the analytical solutions. The method given herein requires no numerical integration; it also exhibits exponential series convergence and can provide excellent accuracy. The procedure involves the derivation of previously-unknown simpler forms for the summations, in some cases by virtue of the use of algebraic components. Also, a mathematical identity given in this paper can be used for a variety of related problems.


Sign in / Sign up

Export Citation Format

Share Document