scholarly journals A model with isospin doublet U(1)D gauge symmetry

2018 ◽  
Vol 33 (14n15) ◽  
pp. 1850089 ◽  
Author(s):  
Takaaki Nomura ◽  
Hiroshi Okada

We propose a model with an extra isospin doublet [Formula: see text] gauge symmetry, in which we introduce several extra fermions with odd parity under a discrete [Formula: see text] symmetry in order to cancel the gauge anomalies out. A remarkable issue is that we impose nonzero [Formula: see text] charge to the Standard Model Higgs, and it gives the most stringent constraint to the vacuum expectation value of a scalar field breaking the [Formula: see text] symmetry that is severer than the LEP bound. We then explore relic density of a Majorana dark matter candidate without conflict of constraints from lepton flavor violating processes. A global analysis is carried out to search for parameters which can accommodate with the observed data.

2015 ◽  
Vol 30 (12) ◽  
pp. 1550063 ◽  
Author(s):  
Francisco J. de Anda

We propose a five-dimensional model based on the idea of Gauge-Higgs Unification (GHU) with the gauge group SO(5) × U(1) in Randall–Sundrum (RS) spacetime. We obtain a left–right (LR) symmetric model with a stable scalar identified as a dark matter candidate. This stable scalar obtains a vacuum expectation value (VEV) that gives mass to fermions in the bulk through the Hosotani Mechanism. There is a scalar localized on a brane and gives contributions to fermion masses. This scalar fits the observed Higgs boson data. We are able to fit all the Standard Model (SM) observables while evading constraints.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Junichi Haruna ◽  
Hikaru Kawai

Abstract In the standard model, the weak scale is the only parameter with mass dimensions. This means that the standard model itself cannot explain the origin of the weak scale. On the other hand, from the results of recent accelerator experiments, except for some small corrections, the standard model has increased the possibility of being an effective theory up to the Planck scale. From these facts, it is naturally inferred that the weak scale is determined by some dynamics from the Planck scale. In order to answer this question, we rely on the multiple point criticality principle as a clue and consider the classically conformal $\mathbb{Z}_2\times \mathbb{Z}_2$ invariant two-scalar model as a minimal model in which the weak scale is generated dynamically from the Planck scale. This model contains only two real scalar fields and does not contain any fermions or gauge fields. In this model, due to a Coleman–Weinberg-like mechanism, the one-scalar field spontaneously breaks the $ \mathbb{Z}_2$ symmetry with a vacuum expectation value connected with the cutoff momentum. We investigate this using the one-loop effective potential, renormalization group and large-$N$ limit. We also investigate whether it is possible to reproduce the mass term and vacuum expectation value of the Higgs field by coupling this model with the standard model in the Higgs portal framework. In this case, the one-scalar field that does not break $\mathbb{Z}_2$ can be a candidate for dark matter and have a mass of about several TeV in appropriate parameters. On the other hand, the other scalar field breaks $\mathbb{Z}_2$ and has a mass of several tens of GeV. These results will be verifiable in near-future experiments.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Ufuk Aydemir ◽  
Tanumoy Mandal

We investigate the possibility of TeV-scale scalars as low energy remnants arising in the nonsupersymmetric SO(10) grand unification framework where the field content is minimal. We consider a scenario where the SO(10) gauge symmetry is broken into the gauge symmetry of the Standard Model (SM) through multiple stages of symmetry breaking, and a colored and hypercharged scalar χ picks a TeV-scale mass in the process. The last stage of the symmetry breaking occurs at the TeV-scale where the left-right symmetry, that is, SU(2)L⊗SU(2)R⊗U(1)B-L⊗SU(3)C, is broken into that of the SM by a singlet scalar field S of mass MS~1 TeV, which is a component of an SU(2)R-triplet scalar field, acquiring a TeV-scale vacuum expectation value. For the LHC phenomenology, we consider a scenario where S is produced via gluon-gluon fusion through loop interactions with χ and also decays to a pair of SM gauge bosons through χ in the loop. We find that the parameter space is heavily constrained from the latest LHC data. We use a multivariate analysis to estimate the LHC discovery reach of S into the diphoton channel.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
M. Gogberashvili

We suggest using Einstein’s static universe metric for the metastable state after reheating, instead of the Friedman-Robertson-Walker spacetime. In this case, strong static gravitational potential leads to the effective reduction of the Higgs vacuum expectation value, which is found to be compatible with the Standard Model first-order electroweak phase transition conditions. Gravity could also increase the CP-violating effects for particles that cross the new phase bubble walls and thus is able to lead to the successful electroweak baryogenesis scenario.


1997 ◽  
Vol 12 (06) ◽  
pp. 419-426 ◽  
Author(s):  
J. Urban ◽  
F. Krauss ◽  
Ch. Hofmann ◽  
G. Soff

We calculate all relevant Feynman-diagrams in lowest order for [Formula: see text]-mixing. We add to the Standard Model (SM) two scalar Higgs-doublets and take into account the Minimal Supersymmetric Standard Model (MSSM). Within the Standard Model which has been extended by two Higgs-doublets we find the following relation between the Higgs-mass and its vacuum expectation value (vev): mH=5000/7(au-0.43). Inclusion of the MSSM pushes the value of Vtd to the lower edge of the experimentally allowed range.


2006 ◽  
Vol 21 (26) ◽  
pp. 5205-5220 ◽  
Author(s):  
PRASANTA KUMAR DAS

We investigate the Randall–Sundrum model with a light stabilized radion (required to fix the size of the extra dimension) in the light of muon anomalous magnetic moment [Formula: see text]. Using the recent data (obtained from the E821 experiment of the BNL Collaboration) which differs by 2.6σ from the Standard Model result, we obtain constraints on radion mass mϕ and radion vacuum expectation value 〈ϕ〉. In the presence of a radion the beta functions β(λ) and β(gt) of Higgs quartic coupling (λ) and top-Yukawa coupling (gt) gets modified. We find these modified beta functions. Using these beta functions together with the anomaly constrained mϕ and 〈ϕ〉, we obtain lower bound on Higgs mass mh. We compare our result with the present LEP2 bound on mh.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Andreas Crivellin ◽  
Christoph Greub ◽  
Dario Müller ◽  
Francesco Saturnino

Abstract Leptoquarks are hypothetical new particles, which couple quarks directly to leptons. They experienced a renaissance in recent years as they are prime candidates to explain the so-called flavor anomalies, i.e. the deviations between the Standard Model predictions and measurements in b → sℓ+ℓ− and b → cτν processes and in the anomalous magnetic moment of the muon. At the one-loop level these particles unavoidably generate effects in the purely leptonic processes like Z → ℓ+ℓ−, Z →$$ v\overline{v} $$ v v ¯ , W → ℓν and h → ℓ+ℓ− and can even generate non-zero rates for lepton flavor violating processes such as ℓ → ℓ′γ, Z → ℓ+ℓ′−, h → ℓ+ℓ′− and ℓ → 3ℓ′. In this article we calculate these processes for all five representations of scalar Leptoquarks. We include their most general interaction terms with the Standard Model Higgs boson, which leads to Leptoquark mixing after the former acquires a vacuum expectation value. In our phenomenological analysis we investigate the effects in modified lepton couplings to electroweak gauge bosons, we study the correlations of the anomalous magnetic moment of the muon with h → μ+μ− and Z → μ+μ− as well as the interplay between different lepton flavor violating decays.


2008 ◽  
Vol 23 (09) ◽  
pp. 647-652 ◽  
Author(s):  
ERNEST MA

This review deals with the recent resurgence of interest in adding a second scalar doublet (η+, η0) to the Standard Model of particle interactions. In most studies, it is taken for granted that η0 should have a nonzero vacuum expectation value, even if it may be very small. What if there is an exactly conserved symmetry which ensures 〈η0 〉 = 0? The phenomenological ramifications of this idea include dark matter, radiative neutrino mass, leptogenesis, and grand unification.


2011 ◽  
Vol 26 (09) ◽  
pp. 1569-1627 ◽  
Author(s):  
MICHAEL AMBROSO ◽  
BURT A. OVRUT

The matter spectrum of the MSSM, including three right-handed neutrino supermultiplets and one pair of Higgs–Higgs conjugate superfields, can be obtained by compactifying the E8 ×E8 heterotic string and M-theory on Calabi–Yau manifolds with specific SU(4) vector bundles. These theories have the standard model gauge group augmented by an additional gauged U(1)B-L. Their minimal content requires that the B-L gauge symmetry be spontaneously broken by a vacuum expectation value of at least one right-handed sneutrino. In previous papers, we presented the results of a quasianalytic renormalization group analysis showing that B-L gauge symmetry is indeed radiatively broken with an appropriate B-L/electroweak hierarchy. In this paper, we extend these results by (1) enlarging the initial parameter space and (2) explicitly calculating the renormalization group equations numerically. The regions of the initial parameter space leading to realistic vacua are presented and the B-L/electroweak hierarchy computed over these regimes. At representative points, the mass spectrum for all sparticles and Higgs fields is calculated and shown to be consistent with present experimental bounds. Some fundamental phenomenological signatures of a nonzero right-handed sneutrino expectation value are discussed, particularly the cosmology and proton lifetime arising from induced lepton and baryon number violating interactions.


Sign in / Sign up

Export Citation Format

Share Document