Vacuum polarization in the background of conical singularity

2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040030
Author(s):  
Yuri V. Grats ◽  
Pavel Spirin

We consider the gravity-induced effects associated with a massless scalar field living in a higher-dimensional spacetime being the tensor product of Minkowski space and spherically-symmetric space with angle deficit. These spacetimes are considered as simple models for a multidimensional global monopole or cosmic string with flat extra dimensions, where the deficit of solid angle is proportional to Newton constant and tension. Thus, we refer to them as conical backgrounds. In terms of the angular deficit value, we derive the perturbative expression for the scalar Green’s function and compute it to the leading order. With the use of this Green’s function we compute the renormalized vacuum expectation value of the scalar-field’s energy-momentum tensor. We make some general note on the linear-on-curvature part of the trace of even coefficients of Schwinger-deWitt expansion.

2016 ◽  
Vol 25 (10) ◽  
pp. 1650097 ◽  
Author(s):  
M. Sahraee ◽  
M. R. Setare

In this paper, we study the effect of the quantum backreaction on Brans–Dicke cosmology in inflation era. We consider an inflaton field in the [Formula: see text]-dimensional spacetime in the framework of Brans–Dicke model. We use a new notation for the Brans–Dicke field in terms of the dilaton field. Then we obtain the vacuum expectation value of the full energy–momentum tensor using WKB approximation of the mode functions which satisfy the equations of motion. The obtained vacuum expectation values of energy–momentum tensor are divergent. In order to renormalize it, we introduce a constant cut-off [Formula: see text]. The vacuum expectation value of energy–momentum tensor is separated to the UV and IR parts by using [Formula: see text] cut-off. Then, we use the dimensional regularization method to eliminate divergences by introducing a counterterm action. Also, we calculate the IR contribution of the vacuum expectation value of energy–momentum tensor. Thus, we obtain a physically finite result for the quantum energy–momentum tensor. Finally, we find the effect of backreaction on scale factor.


2018 ◽  
Vol 27 (12) ◽  
pp. 1850107 ◽  
Author(s):  
H. F. Mota ◽  
E. R. Bezerra de Mello ◽  
K. Bakke

In this paper we present a complete and detailed analysis of the calculation of both the Wightman function and the vacuum expectation value of the energy–momentum tensor that arise from quantum vacuum fluctuations of massive and massless scalar fields in the cosmic dispiration spacetime, which is formed by the combination of two topological defects: a cosmic string and a screw dislocation. This spacetime is obtained in the framework of the Einstein–Cartan theory of gravity and is considered to be a chiral spacelike cosmic string. For completeness we perform the calculation in a high-dimensional spacetime, with flat extra dimensions. We found closed expressions for the energy–momentum tensor and, in particular, in [Formula: see text]-dimensions, we compare our results with previous existing ones in the literature for the massless scalar field case.


The energy-momentum tensor is calculated in the two dimensional quantum theory of a massless scalar field influenced by the motion of a perfectly reflecting boundary (mirror). This simple model system evidently can provide insight into more sophisticated processes, such as particle production in cosmological models and exploding black holes. In spite of the conformally static nature of the problem, the vacuum expectation value of the tensor for an arbitrary mirror trajectory exhibits a non-vanishing radiation flux (which may be readily computed). The expectation value of the instantaneous energy flux is negative when the proper acceleration of the mirror is increasing, but the total energy radiated during a bounded mirror motion is positive. A uniformly accelerating mirror does not radiate; however, our quantization does not coincide with the treatment of that system as a ‘static universe’. The calculation of the expectation value requires a regularization procedure of covariant separation of points (in products of field operators) along time-like geodesics; more naïve methods do not yield the same answers. A striking example involving two mirrors clarifies the significance of the conformal anomaly.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 127
Author(s):  
Yuri V. Grats ◽  
Pavel Spirin

The effects of vacuum polarization associated with a massless scalar field near pointlike source with a zero-range potential in three spatial dimensions are analyzed. The “physical” approach consists in the usage of direct delta-potential as a model of pointlike interaction. We use the Perturbation theory in the Fourier space with dimensional regularization of the momentum integrals. In the weak-field approximation, we compute the effects of interest. The “mathematical” approach implies the self-adjoint extension technique. In the Quantum-Field-Theory framework we consider the massless scalar field in a 3-dimensional Euclidean space with an extracted point. With appropriate boundary conditions it is considered an adequate mathematical model for the description of a pointlike source. We compute the renormalized vacuum expectation value ⟨ϕ2(x)⟩ren of the field square and the renormalized vacuum averaged of the scalar-field’s energy-momentum tensor ⟨Tμν(x)⟩ren. For the physical interpretation of the extension parameter we compare these results with those of perturbative computations. In addition, we present some general formulae for vacuum polarization effects at large distances in the presence of an abstract weak potential with finite-sized compact support.


1992 ◽  
Vol 01 (02) ◽  
pp. 371-377 ◽  
Author(s):  
B. LINET

In a conical spacetime, we determine the twisted Euclidean Green’s function for a massive scalar field. In particular, we give a convenient form for studying the vacuum averages. We then derive an integral expression of the vacuum expectation value <Φ2(x)>. In the Minkowski spacetime, we express <Φ2(x)> in terms of elementary functions.


The physical basis underlying the black hole evaporation process is clarified by a calculation of the expectation value of the energy-momentum tensor for a massless scalar field in a completely general two dimensional collapse scenario. It is found that radiation is produced inside the collapsing matter which propagates both inwards and outwards. The ingoing com­ponent eventually emerges from the star after travelling through the centre. The outgoing energy flux appears at infinity as the evaporation radiation discovered by Hawking. At late times, outside the star, the former component fades out exponentially, and the latter component approaches a value which is independent of the details of the collapse process. In the special case of a collapsing hollow, thin shell of matter, all the radiation is produced at the shell. These results are independent of regularization ambiguities, which enter only the static vacuum polariza­tion terms in the energy-momentum tensor. The significance of an earlier remark about black hole explosions is discussed in the light of these results.


1968 ◽  
Vol 46 (15) ◽  
pp. 1681-1684 ◽  
Author(s):  
R. W. Gibberd

It is shown that the partition function of the generalized dimer problem can be formulated in terms of a vacuum-to-vacuum expectation value of time-ordered operators. This expression is then evaluated by using Green's function technique, which has already been used in conjunction with the Ising model and ferroelectric problem.


2011 ◽  
Vol 03 ◽  
pp. 434-445
Author(s):  
EUGÊNIO R. BEZERRA DE MELLO ◽  
ARAM A. SAHARIAN

In this paper we analyze the vacuum expectation values of the field squared and the energy-momentum tensor associated to a massive scalar field in a higher dimensional cosmic string spacetime, obeying Dirichlet or Neumann boundary conditions on the surface orthogonal to the string.


2008 ◽  
Vol 23 (20) ◽  
pp. 3165-3175 ◽  
Author(s):  
J. ESTEVEZ-DELGADO ◽  
T. ZANNIAS

We consider a K-essence involving a massless scalar field Φ minimally coupled to Einstein gravity in D ≥ 4 space–time dimensions. This theory admits a two-parameter family of spherical wormholes representing two asymptotically-flat universes connected via a (D-2)-dimensional spherical throat. The ADM masses of the two ends are unequal and of opposite sign except for a one-parameter family where both ends possess vanishing ADM masses. By cut and paste techniques, we construct a two-parameter family of wormholes where the ends possess equal and positive ADM masses but the throat is a (D-1)-dimensional thin-shell. The structure of the surface energy–momentum tensor is also analyzed.


Sign in / Sign up

Export Citation Format

Share Document