Thermodynamics from field equations for charged radiating rotating black hole near horizon

2020 ◽  
Vol 35 (19) ◽  
pp. 2050092
Author(s):  
Uma Papnoi ◽  
Sushant G. Ghosh

It is well known that near horizon black hole space–times show a resemblance to thermodynamic systems, it is easy to associate the thermodynamic parameters like temperature and entropy with them. In this paper, we study the connection between gravitational dynamics of the horizon and thermodynamics for the case of charged radiating rotating axially symmetric black holes. It is shown that Einstein field equation near apparent horizon can be interpreted in the form of thermodynamic law, i.e. [Formula: see text].

Author(s):  
Nicholas Manton ◽  
Nicholas Mee

This chapter presents the physical motivation for general relativity, derives the Einstein field equation and gives concise derivations of the main results of the theory. It begins with the equivalence principle, tidal forces in Newtonian gravity and their connection to curved spacetime geometry. This leads to a derivation of the field equation. Tests of general relativity are considered: Mercury’s perihelion advance, gravitational redshift, the deflection of starlight and gravitational lenses. The exterior and interior Schwarzschild solutions are discussed. Eddington–Finkelstein coordinates are used to describe objects falling into non-rotating black holes. The Kerr metric is used to describe rotating black holes and their astrophysical consequences. Gravitational waves are described and used to explain the orbital decay of binary neutron stars. Their recent detection by LIGO and the beginning of a new era of gravitational wave astronomy is discussed. Finally, the gravitational field equations are derived from the Einstein–Hilbert action.


2011 ◽  
Vol 26 (16) ◽  
pp. 1221-1230 ◽  
Author(s):  
HIROMI SUZUKI

Previously we investigated the cosmic wiggly strings in (3+1)-dimensional Schwarzschild, Reissner–Nordström and Kerr black holes. As an extension, the solutions in (3+1)-dimensional axially symmetric charged rotating black hole are investigated. The solution for the wiggly string exhibits open strings lying along the circular orbit in the equatorial plane outside horizon.


Author(s):  
Samuel L. Braunstein ◽  
Saurya Das ◽  
Zhi-Wei Wang

We show that the apparent horizon and the region near [Formula: see text] of an evaporating charged, rotating black hole are timelike. It then follows that black holes in nature, which invariably have some rotation, have a channel, via which classical or quantum information can escape to the outside, while the black hole shrinks in size. We discuss implications for the information loss problem.


2021 ◽  
Vol 16 (3) ◽  
Author(s):  
Monika Sati ◽  
K.C. Petwal

In the present manuscript, we endeavour to review and develop the black hole solutions in general relativity. We emphasize here the Schwarzschild solution in Einstein’s field equation, which describes the gravitational field outside a spherical mass. The paper aims to obtain certain results, including the description of the Einstein field equation with stationary and static solutions and components of the metric that turns out to be time independent, some experiments on the Schwarzschild - Penrose diagram, the Kerr-Newman solution for rotating black holes, and the Reissner- Nordstrom solution for static and charged black holes.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Zhong-Wen Feng ◽  
Shu-Zheng Yang

The entropic force attracts a lot of interest for its multifunctional properties. For instance, Einstein’s field equation, Newton’s law of gravitation, and the Friedmann equation can be derived from the entropic force. In this paper, utilizing a new kind of rainbow gravity model that was proposed by Magueijo and Smolin, we explore the quantum gravity corrections to the entropic force. First, we derive the modified thermodynamics of a rainbow black hole via its surface gravity. Then, according to Verlinde’s theory, the quantum corrections to the entropic force are obtained. The result shows that the modified entropic force is related not only to the properties of the black hole but also to the Planck length lp and the rainbow parameter γ. Furthermore, based on the rainbow gravity corrected entropic force, the modified Einstein field equation and the modified Friedmann equation are also derived.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950160
Author(s):  
M. B. Tataryn ◽  
M. M. Stetsko

Static black hole with the Power Maxwell invariant (PMI), Born–Infeld (BI), logarithmic (LN), exponential (EN) electromagnetic fields in three-dimensional spacetime with cosmological constant was studied. It was shown that the LN and EN fields represent the Born–Infeld type of nonlinear electrodynamics. It the framework of General Relativity the exact solutions of the field equations were obtained, corresponding thermodynamic functions were calculated and the [Formula: see text] criticality of the black holes in the extended phase-space thermodynamics was investigated.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050081
Author(s):  
S. Rajaee Chaloshtary ◽  
M. Kord Zangeneh ◽  
S. Hajkhalili ◽  
A. Sheykhi ◽  
S. M. Zebarjad

We investigate a new class of [Formula: see text]-dimensional topological black hole solutions in the context of massive gravity and in the presence of logarithmic nonlinear electrodynamics. Exploring higher-dimensional solutions in massive gravity coupled to nonlinear electrodynamics is motivated by holographic hypothesis as well as string theory. We first construct exact solutions of the field equations and then explore the behavior of the metric functions for different values of the model parameters. We observe that our black holes admit the multi-horizons caused by a quantum effect called anti-evaporation. Next, by calculating the conserved and thermodynamic quantities, we obtain a generalized Smarr formula. We find that the first law of black holes thermodynamics is satisfied on the black hole horizon. We study thermal stability of the obtained solutions in both canonical and grand canonical ensembles. We reveal that depending on the model parameters, our solutions exhibit a rich variety of phase structures. Finally, we explore, for the first time without extending thermodynamics phase space, the critical behavior and reentrant phase transition for black hole solutions in massive gravity theory. We realize that there is a zeroth-order phase transition for a specified range of charge value and the system experiences a large/small/large reentrant phase transition due to the presence of nonlinear electrodynamics.


Author(s):  
Suddhasattwa Brahma ◽  
Dong-han Yeom

Abstract We investigate a regular black hole model with a de Sitter-like core at its center. This type of a black hole model with a false vacuum core was introduced with the hope of singularity-resolution and is a common feature shared by many regular black holes. In this paper, we examine this claim of a singularity-free black hole by employing the thin-shell formalism, and exploring its dynamics, within the Vaidya approximation. We find that during gravitational collapse, the shell necessarily moves along a space-like direction. More interestingly, during the evaporation phase, the shell and the outer apparent horizon approach each other but, unless the evaporation takes place very rapidly, the approaching tendency is too slow to avoid singularity-formation. This shows that albeit a false vacuum core may remove the singularity along the ingoing null direction, there still exists a singularity along the outgoing null direction, unless the evaporation is very strong.


2012 ◽  
Vol 27 (07) ◽  
pp. 1250038 ◽  
Author(s):  
JONG-PHIL LEE

A particle scattered off by a rotating black hole can be amplified when the system is in the superradiant regime. If the system is surrounded by a mirror which reflects the particle back to the black hole the whole system forms a black-hole bomb, amplifying the original field exponentially. We show in this paper that higher-dimensional black holes can also form black-hole bombs at the LHC. For a pion the e-folding time for the field amplification is tc ~ 10-23–10-24 sec . If the lifetime of the black hole is long enough compared with tc, we can observe severely amplified fields.


Sign in / Sign up

Export Citation Format

Share Document