Three-dimensional static black hole with Λ and nonlinear electromagnetic fields and its thermodynamics

2019 ◽  
Vol 28 (12) ◽  
pp. 1950160
Author(s):  
M. B. Tataryn ◽  
M. M. Stetsko

Static black hole with the Power Maxwell invariant (PMI), Born–Infeld (BI), logarithmic (LN), exponential (EN) electromagnetic fields in three-dimensional spacetime with cosmological constant was studied. It was shown that the LN and EN fields represent the Born–Infeld type of nonlinear electrodynamics. It the framework of General Relativity the exact solutions of the field equations were obtained, corresponding thermodynamic functions were calculated and the [Formula: see text] criticality of the black holes in the extended phase-space thermodynamics was investigated.

2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
M Dehghani ◽  
M Badpa

Abstract The coupled scalar, electromagnetic, and gravitational field equations of Einstein–dilaton gravity theory have been solved in a three-dimensional energy-dependent spacetime and in the presence of power-law nonlinear electrodynamics. The scalar potential is written as the linear combination of two exponential functions, and two families of three-dimensional dilatonic black hole solutions have been introduced which indicate the impacts of rainbow functions on the spacetime geometry. Through consideration of curvature scalars, it has been found that the asymptotic behavior of the solutions is neither flat nor anti-de Sitter. It has been illustrated that, with a suitable choice of parameters, the solutions can produce the two-horizon, extreme and naked singularity black holes. By calculating the black hole charge, mass, entropy, temperature, and electric potential, it has been proved that they fulfill the standard form of the first law of black hole thermodynamics. The thermodynamic stability of the black holes has been analyzed by utilizing the canonical and grand canonical ensembles and noting the signature of the black hole heat capacity and Gibbs free energy of the black holes. The points of type-1, type-2, and Hawking–Page phase transitions and the ranges at which the black holes are locally or globally stable have been determined. The geometrical thermodynamics of the black holes has been studied by use of different thermodynamic metrics, and the results of different approaches have been compared.


2014 ◽  
Vol 23 (11) ◽  
pp. 1450088 ◽  
Author(s):  
S. H. Hendi ◽  
B. Eslam Panah ◽  
R. Saffari

In this paper, we consider Einstein gravity in the presence of a class of nonlinear electrodynamics, called power Maxwell invariant (PMI). We take into account (2 + 1)-dimensional spacetime in Einstein-PMI gravity and obtain its black hole solutions. Then, we regard pure F(R) gravity as well as F(R)-conformally invariant Maxwell (CIM) theory to obtain exact solutions of the field equations with black hole interpretation. Finally, we investigate the conserved and thermodynamic quantities and discuss about the first law of thermodynamics for the mentioned gravitational models.


2018 ◽  
Vol 33 (35) ◽  
pp. 1850210 ◽  
Author(s):  
C. L. Ahmed Rizwan ◽  
A. Naveena Kumara ◽  
Deepak Vaid ◽  
K. M. Ajith

In this paper, we investigate the Joule–Thomson effects of AdS black holes with a global monopole. We study the effect of the global monopole parameter [Formula: see text] on the inversion temperature and isenthalpic curves. The obtained result is compared with Joule–Thomson expansion of van der Waals fluid, and the similarities were noted. Phase transition occuring in the extended phase space of this black hole is analogous to that in van der Waals gas. Our study shows that global monopole parameter [Formula: see text] plays a very important role in Joule–Thomson expansion.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050081
Author(s):  
S. Rajaee Chaloshtary ◽  
M. Kord Zangeneh ◽  
S. Hajkhalili ◽  
A. Sheykhi ◽  
S. M. Zebarjad

We investigate a new class of [Formula: see text]-dimensional topological black hole solutions in the context of massive gravity and in the presence of logarithmic nonlinear electrodynamics. Exploring higher-dimensional solutions in massive gravity coupled to nonlinear electrodynamics is motivated by holographic hypothesis as well as string theory. We first construct exact solutions of the field equations and then explore the behavior of the metric functions for different values of the model parameters. We observe that our black holes admit the multi-horizons caused by a quantum effect called anti-evaporation. Next, by calculating the conserved and thermodynamic quantities, we obtain a generalized Smarr formula. We find that the first law of black holes thermodynamics is satisfied on the black hole horizon. We study thermal stability of the obtained solutions in both canonical and grand canonical ensembles. We reveal that depending on the model parameters, our solutions exhibit a rich variety of phase structures. Finally, we explore, for the first time without extending thermodynamics phase space, the critical behavior and reentrant phase transition for black hole solutions in massive gravity theory. We realize that there is a zeroth-order phase transition for a specified range of charge value and the system experiences a large/small/large reentrant phase transition due to the presence of nonlinear electrodynamics.


2016 ◽  
Vol 25 (01) ◽  
pp. 1650010 ◽  
Author(s):  
S. H. Hendi ◽  
S. Panahiyan ◽  
B. Eslam Panah

In this paper, we take into account the black-hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. At first, we consider the cosmological constant as a dynamical pressure to study the phase transitions and analogy of the black holes with the Van der Waals liquid–gas system in the extended phase space. We make a comparison between linear and nonlinear electrodynamics and show that the lowest critical temperature belongs to Maxwell theory. Also, we make some arguments regarding how power of nonlinearity brings the system to Schwarzschild-like and Reissner–Nordström-like limitations. Next, we study the critical behavior of the system in the context of heat capacity. We show that critical behavior of system is similar to the one in phase diagrams of extended phase space. We also extend the study of phase transition points through geometrical thermodynamics (GTs). We introduce two new thermodynamical metrics for extended phase space and show that divergencies of thermodynamical Ricci scalar (TRS) of the new metrics coincide with phase transition points of the system. Then, we introduce a new method for obtaining critical pressure and horizon radius by considering denominator of the heat capacity.


Author(s):  
Thomas Bäckdahl ◽  
Juan A. Valiente Kroon

In this paper, we construct a geometric invariant for initial datasets for the vacuum Einstein field equations , such that is a three-dimensional manifold with an asymptotically Euclidean end and an inner boundary with the topology of the 2-sphere. The hypersurface can be thought of being in the domain of outer communication of a black hole or in the exterior of a star. The geometric invariant vanishes if and only if is an initial dataset for the Kerr spacetime. The construction makes use of the notion of Killing spinors and of an expression for a Killing spinor candidate , which can be constructed out of concomitants of the Weyl tensor.


2014 ◽  
Vol 23 (11) ◽  
pp. 1450095 ◽  
Author(s):  
S. H. Hendi ◽  
M. Sepehri Rad

Employing linear order perturbation theory with the rotation parameter as the perturbative parameter, we obtain asymptotically AdS slowly rotating black hole solutions in the Einstein gravity with Born–Infeld (BI) type nonlinear electrodynamics (NED). We start from asymptotically AdS static black hole solutions coupled to BI type NED in five dimensions. Then, we consider the effect of adding a small amount of angular momenta to the seed solutions. Finally, we investigate the geometry and thermodynamic properties of the solutions.


2019 ◽  
Vol 34 (09) ◽  
pp. 1950063
Author(s):  
Parthapratim Pradhan

We study the extended phase-space thermodynamics of black holes in massive gravity. Particularly, we examine the critical behavior of this black hole using the extended phase-space formalism. Extended phase-space can be defined as one in which the cosmological constant should be treated as a thermodynamic pressure and its conjugate variable as a thermodynamic volume. In this phase-space, we derive the black hole equation of state, the critical pressure, the critical volume and the critical temperature at the critical point. We also derive the critical ratio of this black hole. Moreover, we derive the black hole reduced equation of state in terms of the reduced pressure, the reduced volume and the reduced temperature. Furthermore, we examine the Ehrenfest equations of black holes in massive gravity in the extended phase-space at the critical point. We show that the Ehrenfest equations are satisfied on this black hole and the black hole encounters a second-order phase transition at the critical point in the said phase-space. This is re-examined by evaluating the Pregogine–Defay ratio [Formula: see text]. We determine the value of this ratio is [Formula: see text]. The outcome of this study is completely analogous to the nature of liquid–gas phase transition at the critical point. This investigation also further gives us the profound understanding between the black hole of massive gravity with the liquid–gas system.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Peng Wang ◽  
Houwen Wu ◽  
Haitang Yang ◽  
Feiyu Yao

Abstract In this paper, we extend the phase space of black holes enclosed by a spherical cavity of radius rB to include $$ V=4\pi {r}_B^3/3 $$ V = 4 π r B 3 / 3 as a thermodynamic volume. The thermodynamic behavior of Schwarzschild and Reissner-Nordstrom (RN) black holes is then investigated in the extended phase space. In a canonical ensemble at constant pressure, we find that the aforementioned thermodynamic behavior is remarkably similar to that of the anti-de Sitter (AdS) counterparts with the cosmological constant being interpreted as a pressure. Specifically, a first-order Hawking-Page-like phase transition occurs for a Schwarzschild black hole in a cavity. The phase structure of a RN black hole in a cavity shows a strong resemblance to that of the van der Waals fluid. We also display that the Smarr relation has the same expression in both AdS and cavity cases. Our results may provide a new perspective for the extended thermodynamics of AdS black holes by analogy with black holes in a cavity.


Sign in / Sign up

Export Citation Format

Share Document