scholarly journals Noether symmetries, dynamical constants of motion, and spectrum generating algebras

2021 ◽  
Vol 36 (24) ◽  
pp. 2150166
Author(s):  
Daddy Balondo Iyela ◽  
Jan Govaerts

When discussing consequences of symmetries of dynamical systems based on Noether’s first theorem, most standard textbooks on classical or quantum mechanics present a conclusion stating that a global continuous Lie symmetry implies the existence of a time-independent conserved Noether charge which is the generator of the action on phase space of that symmetry, and which necessarily must as well commute with the Hamiltonian. However this need not be so, nor does that statement do justice to the complete scope and reach of Noether’s first theorem. Rather a much less restrictive statement applies, namely, that the corresponding Noether charge as an observable over phase space may in fact possess an explicit time dependency, and yet define a constant of the motion by having a commutator with the Hamiltonian which is nonvanishing, thus indeed defining a dynamical conserved quantity. Furthermore, and this certainly within the Hamiltonian formulation, the converse statement is valid as well, namely, that any dynamical constant of motion is necessarily the Noether charge of some symmetry leaving the system’s action invariant up to some total time derivative contribution. This contribution revisits these different points and their consequences, straightaway within the Hamiltonian formulation which is the most appropriate for such issues. Explicit illustrations are also provided through three general but simple enough classes of systems.

2016 ◽  
Vol 13 (Supp. 1) ◽  
pp. 1630017 ◽  
Author(s):  
Davide Pastorello

Adopting a geometric point of view on Quantum Mechanics is an intriguing idea since, we know that geometric methods are very powerful in Classical Mechanics then, we can try to use them to study quantum systems. In this paper, we summarize the construction of a general prescription to set up a well-defined and self-consistent geometric Hamiltonian formulation of finite-dimensional quantum theories, where phase space is given by the Hilbert projective space (as Kähler manifold), in the spirit of celebrated works of Kibble, Ashtekar and others. Within geometric Hamiltonian formulation quantum observables are represented by phase space functions, quantum states are described by Liouville densities (phase space probability densities), and Schrödinger dynamics is induced by a Hamiltonian flow on the projective space. We construct the star-product of this phase space formulation and some applications of geometric picture are discussed.


1997 ◽  
Vol 12 (13) ◽  
pp. 899-903 ◽  
Author(s):  
A. Agostinho Neto ◽  
E. Drigo Filho

In the usual supersymmetric quantum mechanics, the supercharges change the eigenfunction from the bosonic to fermionic sector and conversely. The classical correspondent of this transformation is shown to be the addition of a total time derivative of a purely imaginary function to the Lagrangian function of the system.


Author(s):  
Flavio Mercati

This chapter explains in detail the current Hamiltonian formulation of SD, and the concept of Linking Theory of which (GR) and SD are two complementary gauge-fixings. The physical degrees of freedom of SD are identified, the simple way in which it solves the problem of time and the problem of observables in quantum gravity are explained, and the solution to the problem of constructing a spacetime slab from a solution of SD (and the related definition of physical rods and clocks) is described. Furthermore, the canonical way of coupling matter to SD is introduced, together with the operational definition of four-dimensional line element as an effective background for matter fields. The chapter concludes with two ‘structural’ results obtained in the attempt of finding a construction principle for SD: the concept of ‘symmetry doubling’, related to the BRST formulation of the theory, and the idea of ‘conformogeometrodynamics regained’, that is, to derive the theory as the unique one in the extended phase space of GR that realizes the symmetry doubling idea.


1977 ◽  
Vol 16 (11) ◽  
pp. 829-835 ◽  
Author(s):  
S. Datta Majumdar ◽  
M. J. Englefield

1990 ◽  
Vol 138 ◽  
pp. 325-328
Author(s):  
A.V. Klyachkin

The problem of the existence, evolution, and stability of spatial structures in convection is of considerable importance to astrophysics as well as to geophysical hydrodynamics. The Boussinesq approximation will be used because the considered motions in stars are sufficiently slow. The system of hydrodynamic equations describing convection in a rotating inhomogeneous medium has the form: Here Dt is the total time derivative, U the velocity, P, T, and C the deviations of the pressure, temperature, and helium abundance (by mass) from the basic equilibrium values, ρm, νm, χm, and Dm the values averaged over the considered layer of the density, viscosity, thermal and helium diffusivities, βT and βc the averaged coefficients of the thermal and helium expansions, g and Ω the gravitational acceleration and angular velocity, ∇Tb, and ∇Cb the values of the basic equilibrium temperature and helium gradients, and ñTad the adiabatic temperature gradient.


Sign in / Sign up

Export Citation Format

Share Document