Solving Dirac oscillator in commutative and noncommutative planes by supersymmetry structures

Author(s):  
Yue Liu ◽  
Qing Wang ◽  
Ling-Bao Kong ◽  
Jian Jing

Based on the supersymmetry structures, we propose to solve the model of a charged Dirac oscillator interacting with a uniform perpendicular magnetic field on both commutative and noncommutative planes in a unified way by employing unitary transformations. The unitary operators are constructed out of the generators of the supersymmetry structures of the model.

RSC Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 4035-4041
Author(s):  
Yi Wan ◽  
Xing Cheng ◽  
Yanfang Li ◽  
Yaqian Wang ◽  
Yongping Du ◽  
...  

Herein, we demonstrated that a perpendicular magnetic field could produce a dramatic scattering rotation for the vibrations in MoS2 monolayers.


2021 ◽  
Vol 7 (3) ◽  
pp. 38
Author(s):  
Roshni Yadav ◽  
Chun-Hsien Wu ◽  
I-Fen Huang ◽  
Xu Li ◽  
Te-Ho Wu ◽  
...  

In this study, [Co/Ni]2/PtMn thin films with different PtMn thicknesses (2.7 to 32.4 nm) were prepared on Si/SiO2 substrates. The post-deposition perpendicular magnetic field annealing (MFA) processes were carried out to modify the structures and magnetic properties. The MFA process also induced strong interlayer diffusion, rendering a less sharp interface between Co and Ni and PtMn layers. The transmission electron microscopy (TEM) lattice image analysis has shown that the films consisted of face-centered tetragonal (fct) PtMn (ordered by MFA), body-centered cubic (bcc) NiMn (due to intermixing), in addition to face-centered cubic (fcc) Co, Ni, and PtMn phases. The peak shift (2-theta from 39.9° to 40.3°) in X-ray diffraction spectra also confirmed the structural transition from fcc PtMn to fct PtMn after MFA, in agreement with those obtained by lattice images in TEM. The interdiffusion induced by MFA was also evidenced by the depth profile of X-ray photoelectron spectroscopy (XPS). Further, the magnetic properties measured by vibrating sample magnetometry (VSM) have shown an increased coercivity in MFA-treated samples. This is attributed to the presence of ordered fct PtMn, and NiMn phases exchange coupled to the ferromagnetic [Co/Ni]2 layers. The vertical shift (Mshift = −0.03 memu) of the hysteresis loops is ascribed to the pinned spins resulting from perpendicular MFA processes.


2019 ◽  
Vol 126 (24) ◽  
pp. 243904 ◽  
Author(s):  
Yanchao Liu ◽  
Zhenan Jiang ◽  
G. Sidorov ◽  
C. W. Bumby ◽  
R. A. Badcock ◽  
...  

2009 ◽  
Vol 23 (12n13) ◽  
pp. 2647-2654 ◽  
Author(s):  
C. STAMPFER ◽  
E. SCHURTENBERGER ◽  
F. MOLITOR ◽  
J. GÜTTINGER ◽  
T. IHN ◽  
...  

We report on electronic transport experiments on a graphene single electron transistor as function of a perpendicular magnetic field. The device, which consists of a graphene island connected to source and drain electrodes via two narrow graphene constrictions is electronically characterized and the device exhibits a characteristic charging energy of approx. 3.5 meV. We investigate the homogeneity of the two graphene "tunnel" barriers connecting the single electron transistor to source and drain contacts as function of laterally applied electric fields, which are also used to electrostatically tune the overall device. Further, we focus on the barrier transparency as function of an applied perpendicular magnetic field and we find an increase of transparency for increasing magnetic field and a source-drain current saturation for magnetic fields exceeding 5 T.


2017 ◽  
Vol 30 (3) ◽  
pp. 035301 ◽  
Author(s):  
Dušan Z Jakovljević ◽  
Marko M Grujić ◽  
Milan Ž Tadić ◽  
François M Peeters

2008 ◽  
Vol 22 (12) ◽  
pp. 1923-1932
Author(s):  
JIA LIU ◽  
ZI-YU CHEN

The influence of a perpendicular magnetic field on a bound polaron near the interface of a polar–polar semiconductor with Rashba effect has been investigated. The material is based on a GaAs / Al x Ga 1-x As heterojunction and the Al concentration varying from 0.2 ≤ x ≤ 0.4 is the critical value below which the Al x Ga 1-x As is a direct band gap semiconductor.The external magnetic field strongly altered the ground state binding energy of the polaron and the Rashba spin–orbit (SO) interaction originating from the inversion asymmetry in the heterostructure splitting of the ground state binding energy of the bound polaron. How the ground state binding energy will be with the change of the external magnetic field, the location of a single impurity and the electron area density have been shown in this paper, taking into account the SO coupling. The contribution of the phonons are also considered. It is found that the spin-splitting states of the bound polaron are more stable, and, in the condition of weak magnetic field, the Zeeman effect can be neglected.


2006 ◽  
Vol 21 (12) ◽  
pp. 1743-1746 ◽  
Author(s):  
Giacomo Scalari ◽  
Marcel Graf ◽  
Daniel Hofstetter ◽  
Jérôme Faist ◽  
Harvey Beere ◽  
...  

1989 ◽  
Vol 39 (17) ◽  
pp. 12981-12984 ◽  
Author(s):  
S. Bending ◽  
C. Zhang ◽  
K. v. Klitzing ◽  
E. Marclay ◽  
P. Guéret ◽  
...  

2014 ◽  
Vol 90 (1) ◽  
Author(s):  
Yan Feng ◽  
J. Goree ◽  
Bin Liu ◽  
T. P. Intrator ◽  
M. S. Murillo

Sign in / Sign up

Export Citation Format

Share Document