NEUTRINO MASSES IN SUPERSTRING THEORIES WITH INTERMEDIATE SCALES

1988 ◽  
Vol 03 (09) ◽  
pp. 2165-2173 ◽  
Author(s):  
UTPAL SARKAR ◽  
ROBERT B. MANN

Three generation superstring models require intermediate mass scales to be consistent with perturbative unification. We study the problem of neutrino masses in theories with intermediate mass scales which can evolve in the low energy limit of superstring theories.

Author(s):  
M. Ilyas ◽  
A. R. Athar ◽  
Bilal Masud

This study explores the interior geometry of static relativistic charged spheres in the background of a recently proposed modified [Formula: see text] gravity, where [Formula: see text] and [Formula: see text] are the Gauss–Bonnet (GB) invariant and trace of energy–momentum tensor, respectively. The GB gravity is the low-energy limit of superstring theories. The structures of specific relativistic charged spheres Vela [Formula: see text], [Formula: see text], and [Formula: see text] are studied in this theory of gravity. We analyzed several physical behaviors of these relativistic charged spheres with the help of observational data and investigated the various aspects like density profile, stresses, the distribution of charges, stability, etc.


1986 ◽  
Vol 267 (2) ◽  
pp. 365-414 ◽  
Author(s):  
J.P. Derendinger ◽  
L.E. Ibañez ◽  
H.P. Nilles

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 273
Author(s):  
Mariana Graña ◽  
Alvaro Herráez

The swampland is the set of seemingly consistent low-energy effective field theories that cannot be consistently coupled to quantum gravity. In this review we cover some of the conjectural properties that effective theories should possess in order not to fall in the swampland, and we give an overview of their main applications to particle physics. The latter include predictions on neutrino masses, bounds on the cosmological constant, the electroweak and QCD scales, the photon mass, the Higgs potential and some insights about supersymmetry.


2013 ◽  
Vol 124 ◽  
pp. 130-138 ◽  
Author(s):  
Jeffery A. Aguiar ◽  
Bryan W. Reed ◽  
Quentin M. Ramasse ◽  
Rolf Erni ◽  
Nigel D. Browning

Author(s):  
V V Vien ◽  
H N Long ◽  
A E Cárcamo Hernández

Abstract We construct a low-scale seesaw model to generate the masses of active neutrinos based on $S_4$ flavor symmetry supplemented by the $Z_2 \times Z_3 \times Z_4 \times Z_{14}\times U(1)_L$ group, capable of reproducing the low-energy Standard Model (SM) fermion flavor data. The masses of the SM fermions and the fermionic mixing parameters are generated from a Froggatt–Nielsen mechanism after spontaneous breaking of the $S_4\times Z_2 \times Z_3 \times Z_4 \times Z_{14}\times U(1)_L$ group. The obtained values for the physical observables of the quark and lepton sectors are in good agreement with the most recent experimental data. The leptonic Dirac CP-violating phase $\delta _\mathrm{CP}$ is predicted to be $259.579^\circ$ and the predictions for the absolute neutrino masses in the model can also saturate the recent constraints.


Sign in / Sign up

Export Citation Format

Share Document