PARTICLE PRODUCTION BY THE FORMATION OF A GLOBAL MONOPOLE

1991 ◽  
Vol 06 (20) ◽  
pp. 3613-3623 ◽  
Author(s):  
CARLOS O. LOUSTO

We study pair production by the changing gravitational field of a global monopole during its formation in the very early universe after the breaking of a global symmetry. We obtain a result of the same order of magnitude as in the case of gauge strings ρ~(Gη2)2/τ4, where η is the mean value of the scalar field and τ is the time at which the phase transition occurs. We also discuss how a global monopole inside a mini-black-hole affects its final stages of evolution. We find that neither the Hawking temperature nor the entropy-area relation is essentially modified by the presence of the monopole.

2018 ◽  
Vol 33 (35) ◽  
pp. 1850210 ◽  
Author(s):  
C. L. Ahmed Rizwan ◽  
A. Naveena Kumara ◽  
Deepak Vaid ◽  
K. M. Ajith

In this paper, we investigate the Joule–Thomson effects of AdS black holes with a global monopole. We study the effect of the global monopole parameter [Formula: see text] on the inversion temperature and isenthalpic curves. The obtained result is compared with Joule–Thomson expansion of van der Waals fluid, and the similarities were noted. Phase transition occuring in the extended phase space of this black hole is analogous to that in van der Waals gas. Our study shows that global monopole parameter [Formula: see text] plays a very important role in Joule–Thomson expansion.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040023 ◽  
Author(s):  
Andrej B. Arbuzov ◽  
Alexander E. Pavlov

The global time in geometrodynamics is defined in a covariant under diffeomorphisms form. An arbitrary static background metric is taken in the tangent space. The global intrinsic time is identified with the mean value of the logarithm of the square root of the ratio of the metric determinants. The procedures of the Hamiltonian reduction and deparametrization of dynamical systems are implemented. The reduced Hamiltonian equations of motion of gravitational field in semi-geodesic coordinate system are written.


2009 ◽  
Vol 24 (04) ◽  
pp. 719-739 ◽  
Author(s):  
M. KALAM ◽  
F. RAHAMAN ◽  
A. GHOSH ◽  
B. RAYCHAUDHURI

Several physical natures of charged brane-world black holes are investigated. Firstly, the timelike and null geodesics of the charged brane-world black holes are presented. We also analyze all the possible motions by plotting the effective potentials for various parameters for circular and radial geodesics. Secondly, we investigate the motion of test particles in the gravitational field of the charged brane-world black holes using the Hamilton–Jacobi formalism. We consider charged and uncharged test particles and examine their behavior in both static and nonstatic cases. Thirdly, the thermodynamics of the charged brane-world black holes are studied. Finally, it is shown that there is no phenomenon of superradiance for an incident massless scalar field for such a black hole.


The thickness ( d ) of the helium II film and its variation with height ( H ) and temperature were measured by a dynamic method involving the oscillations of a meniscus in a capillary. The variation with height could be represented only approximately by the equation d = k/H n , as the effective value of n was greater at smaller values of H . The mean value of n over a range of heights from 0·5 to 5 cm. was 0·14, which is appreciably smaller than the values predicted by the theories so far advanced to explain the formation of the film. The order of magnitude of k was 2 x 10 -6 cm., but it varied slightly with the nature of the surface or some other experimental factor.


2015 ◽  
Vol 30 (13) ◽  
pp. 1550069
Author(s):  
Yan Peng ◽  
Guohua Liu

We study general models for holographic superconductors with higher correction terms of the scalar field in the four-dimensional AdS black hole background including the matter fields' backreaction on the metric. We explore the effects of the model parameters on the scalar condensation and find that different values of model parameters can determine the order of phase transitions. Moreover, we find that the higher correction terms provide richer physics in the phase transition diagram.


2019 ◽  
Vol 64 (3) ◽  
pp. 217
Author(s):  
V. I. Romanenko ◽  
N. V. Kornilovska

The accuracy of error propagation calculations is estimated for the transformation x → y = f(x) of the normally distributed random variable x. The estimation is based on the formulas for the error propagation obtained for the inverse transformation y → x of the normally distributed random variable y. In the general case, the calculation accuracy for the mean value and the variance of the random variable y is shown to be of the first order of magnitude in the variance of the random variable x.


2010 ◽  
Author(s):  
Reinhard Horst Beyer ◽  
H. A. Morales-Tecotl ◽  
L. A. Urena-Lopez ◽  
R. Linares-Romero ◽  
H. H. Garcia-Compean

2008 ◽  
Vol 23 (05) ◽  
pp. 359-369 ◽  
Author(s):  
SONGBAI CHEN ◽  
JILIANG JING

Using the technique of spectral decomposition, we investigated the late-time tails of massless and massive coupled scalar fields in the background of a black hole with a global monopole. We found that due to the existence of the coupling between the scalar and gravitational fields, the massless scalar field decay faster at timelike infinity i+, and so does the massive one in the intermediate late time. But the asymptotically late-time tail for the massive scalar field is not affected and its decay rate is still t-5/6.


Sign in / Sign up

Export Citation Format

Share Document