GAUGE-COVARIANT WESS-ZUMINO ACTIONS FOR SUPER p-BRANES IN SUPERSPACE

1992 ◽  
Vol 07 (10) ◽  
pp. 2153-2173 ◽  
Author(s):  
E.A. IVANOV ◽  
A.A. KAPUSTNIKOV

We present a general method of constructing manifestly world-volume supersymmetric actions of super p-branes, starting from some higher-dimensional field theories in which the partial breaking of global supersymmetry (PBGS) comes about. Our approach is based upon a substitution of the superspace coordinates which relates linear and nonlinear realizations of PBGS. As instructive examples we consider the massive d=2 superparticle (p=0) and d=4 superstring (p=1). The relevant world-line and world-sheet superfied actions naturally appear as a long-wavelength limit of the superfield actions of some two- and four-dimensional supersymmetric field theories possessing topologically nontrivial soliton solutions. The corresponding topological charges prove to enter the super p-brane actions as the coupling constants. We also give a new general Wess-Zumino-type representation of the d=2 superparticle action via the world-line superfields. It respects invariances both under the target space Poincaré supersymmetry and the gauge group of general reparametrizations of the world-line superspace. In one gauge, it is reduced to the standard PBGS form while in another, it gives rise to a very simple action which displays manifest world-line superconformal symmetry and is directly related to the familiar component action of the superparticle. The fermionic κ-symmetry of the latter can be identified with the odd sector of superconformal symmetry. This identity suggests a simple recipe for building higher-order κ-invariant corrections to the minimal superparticle action.

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Jin Chen ◽  
Chao-Hsiang Sheu ◽  
Mikhail Shifman ◽  
Gianni Tallarita ◽  
Alexei Yung

Abstract We study two-dimensional weighted $$ \mathcal{N} $$ N = (2) supersymmetric ℂℙ models with the goal of exploring their infrared (IR) limit. 𝕎ℂℙ(N,$$ \tilde{N} $$ N ˜ ) are simplified versions of world-sheet theories on non-Abelian strings in four-dimensional $$ \mathcal{N} $$ N = 2 QCD. In the gauged linear sigma model (GLSM) formulation, 𝕎ℂℙ(N,$$ \tilde{N} $$ N ˜ ) has N charges +1 and $$ \tilde{N} $$ N ˜ charges −1 fields. As well-known, at $$ \tilde{N} $$ N ˜ = N this GLSM is conformal. Its target space is believed to be a non-compact Calabi-Yau manifold. We mostly focus on the N = 2 case, then the Calabi-Yau space is a conifold. On the other hand, in the non-linear sigma model (NLSM) formulation the model has ultra-violet logarithms and does not look conformal. Moreover, its metric is not Ricci-flat. We address this puzzle by studying the renormalization group (RG) flow of the model. We show that the metric of NLSM becomes Ricci-flat in the IR. Moreover, it tends to the known metric of the resolved conifold. We also study a close relative of the 𝕎ℂℙ model — the so called zn model — which in actuality represents the world sheet theory on a non-Abelian semilocal string and show that this zn model has similar RG properties.


1999 ◽  
Vol 14 (28) ◽  
pp. 4501-4517 ◽  
Author(s):  
FEDELE LIZZI

We describe how the presence of the antisymmetric tensor (torsion) on the world sheet action of string theory renders the size of the target space a gauge noninvariant quantity. This generalizes the R ↔ 1/R symmetry in which momenta and windings are exchanged, to the whole O(d,d,ℤ). The crucial point is that, with a transformation, it is possible always to have all of the lowest eigenvalues of the Hamiltonian to be momentum modes. We interpret this in the framework of noncommutative geometry, in which algebras take the place of point spaces, and of the spectral action principle for which the eigenvalues of the Dirac operator are the fundamental objects, out of which the theory is constructed. A quantum observer, in the presence of many low energy eigenvalues of the Dirac operator (and hence of the Hamiltonian) will always interpreted the target space of the string theory as effectively uncompactified.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yuki Hiraga ◽  
Yuki Sato

Abstract We study quantum aspects of the target space of the non-linear sigma model, which is a low-energy effective theory of the gauged linear sigma model (GLSM). As such, we especially compute the exact sphere partition function of the GLSM for KK$5$-branes whose background geometry is a Taub–NUT space, using the supersymmetric localization technique on the Coulomb branch. From the sphere partition function, we distill the world-sheet instanton effects. In particular, we show that, concerning the single-centered Taub–NUT space, instanton contributions exist only if the asymptotic radius of the $S^1$ fiber in the Taub–NUT space is zero.


1989 ◽  
Vol 04 (07) ◽  
pp. 1827-1849 ◽  
Author(s):  
W. SIEGEL

We extend the previous method for deriving manifestly Lorentz and gauge covariant free field theories from the light cone for arbitrary Poincare representations to arbitrary supersymmetry representations. In the former case the action was expressed in terms of a BRST algebra obtained by adding two commuting and two anticommuting dimensions; in the present case we add 4+4 to obtain the BRST and covariant supersymmetry generators, and we propose an action. When applied to strings this method introduces as coordinates the world-sheet metric, which may therefore be necessary for superstrings.


2014 ◽  
Vol 92 (10) ◽  
pp. 1278-1280
Author(s):  
D.G.C. McKeon

It is shown how in 3 + 3 dimensions, it is possible to have a superparticle Lagrangian that has manifest supersymmetry both on the world line and in the target space.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter discusses the kinematics of point particles undergoing any type of motion. It introduces the concept of proper time—the geometric representation of the time measured by an accelerated clock. It also describes a world line, which represents the motion of a material point or point particle P, that is, an object whose spatial extent and internal structure can be ignored. The chapter then considers the interpretation of the curvilinear abscissa, which by definition measures the length of the world line L representing the motion of the point particle P. Next, the chapter discusses a mathematical result popularized by Paul Langevin in the 1920s, the so-called ‘Langevin twins’ which revealed a paradoxical result. Finally, the transformation of velocities and accelerations is discussed.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Hanno Bertle ◽  
Andrea Dei ◽  
Matthias R. Gaberdiel

Abstract The large N limit of symmetric orbifold theories was recently argued to have an AdS/CFT dual world-sheet description in terms of an sl(2, ℝ) WZW model. In previous work the world-sheet state corresponding to the symmetric orbifold stress-energy tensor was identified. We calculate certain 2- and 3-point functions of the corresponding vertex operator on the world-sheet, and demonstrate that these amplitudes reproduce exactly what one expects from the dual symmetric orbifold perspective.


1995 ◽  
Vol 10 (05) ◽  
pp. 441-450 ◽  
Author(s):  
R. PERCACCI ◽  
E. SEZGIN

We study the target space duality transformations in p-branes as transformations which mix the world volume field equations with Bianchi identities. We consider an (m+p+1)-dimensional space-time with p+1 dimensions compactified, and a particular form of the background fields. We find that while a GL (2) = SL (2) × R group is realized when m = 0, only a two-parameter group is realized when m > 0.


Sign in / Sign up

Export Citation Format

Share Document