SPONTANEOUS CP VIOLATION FROM A QUATERNIONIC KALUZA–KLEIN THEORY

1993 ◽  
Vol 08 (19) ◽  
pp. 3263-3283 ◽  
Author(s):  
B. E. HANLON ◽  
G. C. JOSHI

Motivated by the isomorphism between the universal covering group of the six-dimensional Lorentz group and the special linear group over the quaternions, a locally quaternionic covariant theory is postulated to exist in six space–time dimensions. Compactifying onto the space–time M4 ⊗ S2 a complex theory is retrieved on the four-dimensional Minkowski space with the essential quaternionic nature confined to S2. Quaternionic spinors are introduced and a dimensionally reduced theory recovered which exhibits a CP-violating effect via spontaneous symmetry breaking.

2006 ◽  
Vol 21 (28n29) ◽  
pp. 5905-5956 ◽  
Author(s):  
MATEJ PAVŠIČ

A theory in which four-dimensional space–time is generalized to a larger space, namely a 16-dimensional Clifford space (C-space) is investigated. Curved Clifford space can provide a realization of Kaluza–Klein. A covariant Dirac equation in curved C-space is explored. The generalized Dirac field is assumed to be a polyvector-valued object (a Clifford number) which can be written as a superposition of four independent spinors, each spanning a different left ideal of Clifford algebra. The general transformations of a polyvector can act from the left and/or from the right, and form a large gauge group which may contain the group U (1) × SU (2) × SU (3) of the standard model. The generalized spin connection in C-space has the properties of Yang–Mills gauge fields. It contains the ordinary spin connection related to gravity (with torsion), and extra parts describing additional interactions, including those described by the antisymmetric Kalb–Ramond fields.


1992 ◽  
Vol 07 (29) ◽  
pp. 2669-2683 ◽  
Author(s):  
ANDREI A. BYTSENKO ◽  
LUCIANO VANZO ◽  
SERGIO ZERBINI

In the framework of heat-kernel approach to zeta-function regularization, the one-loop effective potential at finite temperature for scalar and spinor fields on Kaluza-Klein space-time of the form [Formula: see text], where MP is p-dimensional Minkowski space-time is evaluated. In particular, when the compact manifold is [Formula: see text], the Selberg trace formula associated with discrete torsion-free group Γ of the n-dimensional Lobachevsky space Hn is used. An explicit representation for the thermodynamic potential valid for arbitrary temperature is found. As a result a complete high temperature expansion is presented and the roles of zero modes and topological contributions is discussed.


2004 ◽  
Vol 19 (29) ◽  
pp. 5043-5050 ◽  
Author(s):  
YONGGE MA ◽  
JUN WU

A free test particle in five-dimensional Kaluza–Klein space–time will show its electricity in the reduced four-dimensional space–time when it moves along the fifth dimension. In the light of this observation, we study the coupling of a five-dimensional dust field with the Kaluza–Klein gravity. It turns out that the dust field can curve the five-dimensional space–time in such a way that it provides exactly the source of the electromagnetic field in the four-dimensional space–time after the dimensional reduction.


Sign in / Sign up

Export Citation Format

Share Document