EXACT COSMIC STRING SOLUTIONS BASED ON THE CONTINUUM THEORY OF DISLOCATIONS

1994 ◽  
Vol 09 (23) ◽  
pp. 4101-4127 ◽  
Author(s):  
TAKEHIKO T. FUJISHIRO ◽  
MITSUO J. HAYASHI ◽  
SHOJI TAKESHITA

The effective action from the string compactification is studied on the manifolds with absolute parallelism. The cosmic strings can be described naturally by torsion formalism which has a direct analogy with dislocations in three-dimensional crystalline solids. We have found a stringy solution in a six-dimensional model on M4 × T2 which is compatible with that of Greene et al. and a cylindrically symmetric exact solution is obtained, which are different from the exact cosmic string solutions of the Einstein theory ever proposed. We have also obtained an exact solution in a four-dimensional model on M2 × T2 which can be considered as an example of the compactification on the noncompact manifold and may be expected to describe a space–time structure of our universe. The relation between the mass per unit length and the deficit angle is different from but can be consistent with that of the Einstein theory, since our solution could reproduce its prediction with a condition. We could also obtain the maximum value of the mass per unit length μ ~ 10−6 (~ 1022 g/cm ) by fine-tuning a parameter, which is consistent with recent observations. We have discussed the cosmic strings with the deficit angle larger than 2π.

1993 ◽  
Vol 08 (06) ◽  
pp. 491-501 ◽  
Author(s):  
TAKEHIKO T. FUJISHIRO ◽  
MITSUO J. HAYASHI ◽  
SHOJI TAKESHITA

The cosmic strings can be described naturally by torsion formalism which has a direct analogy with dislocations in three-dimensional crystalline solid. We have obtained an exact solution in a four-dimensional model on M2×T2 and may be expected to describe a space-time structure of our universe. The relation between the mass per unit length and the deficit angle are different from that of the Einstein theory, but can be made consistent since our model could reproduce its prediction. We could also obtain the maximum value of the mass per unit length µ~10−6(~1022 g/cm ) by fine tuning of a parameter, which is consistent with the recent observations.


1991 ◽  
Vol 06 (24) ◽  
pp. 2237-2242 ◽  
Author(s):  
TAKEHIKO T. FUJISHIRO ◽  
MITSUO J. HAYASHI ◽  
SHOJI TAKESHITA

The effective action from the heterotic string compactification is studied on the manifolds with absolute parallelism. The cosmic string solutions resulting from the effective action are discussed in analogy with the dislocations in 3-dimensional crystalline solid. The cosmic string density is concluded to be given by the torsion tensor of space-time, which gives rise to a compactification at least in 1-dimensional direction in space-time. It is also shown that the contorsion tensor defines the deficit angle. We have found a stringy solution in a 6-dimensional model on M4 × T2 which coincides with that of Greene et al.,5 but the string energy density depends only on torsion, therefore independent of the space-time metric.


2007 ◽  
Vol 22 (25n28) ◽  
pp. 2035-2038
Author(s):  
OSAMU SETO ◽  
JUN'ICHI YOKOYAMA

We investigated a simple D-term inflation with taking account of higher order corrections in the Kähler potential. These terms may solve the cosmic string problem in D-term inflation model. The mass per unit length of cosmic strings formed after inflation can be suppressed enough. In addition, the change of the potential slope leads simultaneously a more tilted scalar spectral index ns ≃ 0.96 – 0.97 than that in the model without these corrections.


2014 ◽  
Vol 23 (07) ◽  
pp. 1450060 ◽  
Author(s):  
Vassil K. Tinchev ◽  
Stoytcho S. Yazadjiev

We examine the shadow cast by a Kerr black hole pierced by a cosmic string. The observable images depend not only on the black hole spin parameter and the angle of inclination, but also on the deficit angle yielded by the cosmic string. The dependence of the observable characteristics of the shadow on the deficit angle is explored. The imprints in the black hole shadow left by the presence of a cosmic string can serve in principle as a method for observational detection of such strings.


1994 ◽  
Vol 09 (18) ◽  
pp. 3203-3227 ◽  
Author(s):  
PAUL S. GREEN ◽  
TRISTAN HÜBSCH

In a general superstring vacuum configuration, the “internal” space (sector) varies in space-time. When this variation is nontrivial only in two spacelike dimensions, the vacuum contains static cosmic strings with finite energy per unit length and which is, up to interactions with matter, an easily computed topological invariant. The total space-time is smooth although the “internal” space is singular at the center of each cosmic string. In a similar analysis of the Wick-rotated Euclidean model, these cosmic strings acquire expected self-interactions. Also, a possibility emerges to define a global time in order to rotate back to the Lorentzian case.


1994 ◽  
Vol 09 (11) ◽  
pp. 1787-1795
Author(s):  
TAKUYA MAKI ◽  
KIYOSHI SHIRAISHI

We study the effect of background geometry generated by a thin cosmic string on the anomalous magnetic moment of the electron. We find that the magnitude of the quantum correction to the magnetic moment depends on the distance from the cosmic string as well as on the deficit angle.


2014 ◽  
Vol 23 (08) ◽  
pp. 1450066 ◽  
Author(s):  
Reinoud Jan Slagter

The time evolution of a self-gravitating U(1) cosmic string on a warped five-dimensional (5D) axially symmetric spacetime is numerically investigated. Although cosmic strings are theoretically predicted in four-dimensional (4D) general relativistic models, there is still no observational evidence of their existence. From recent observations of the cosmic microwave background (CMB), it is concluded that these cosmic strings cannot provide a satisfactory explanation for the bulk of density perturbations. They even could not survive inflation. It is conjectured that only in a 5D warped braneworld model there will be observable imprint of these so-called cosmic superstrings on the induced effective 4D brane metric for values of the symmetry breaking scale larger than the grand unified theory (GUT) values. The warp factor makes these strings consistent with the predicted mass per unit length on the brane. However, in a time-dependent setting, it seems that there is a wavelike energy–momentum transfer to infinity on the brane, a high-energy braneworld behavior. This in contrast to earlier results in approximation models. Evidence of this information from the bulk geometry could be found in the gravitational cosmic background radiation via gravitational wave energy–momentum affecting the brane evolution. Fluctuations of the brane when there is a U(1) gauge field present, are comparable with the proposed brane tension fluctuations, or branons, whose relic abundance can be a dark matter candidate. We briefly made a connection with the critical behavior at the threshold of black hole formation found by Choptuik several decades ago in self-gravitating time-dependent scalar field models. The critical distinction between dispersion of the scalar waves and singular behavior fade away when a time-dependent warp factor is present.


2005 ◽  
Vol 20 (13) ◽  
pp. 2821-2832 ◽  
Author(s):  
N. ÖZDEMİR

In this work, we give a general class of solutions of the spinning cosmic string in Einstein's theory of gravity. After treating same problem in Einstein–Cartan (EC) theory of gravity, the exact solution satisfying both exterior and interior space–times representing a spin fluid moving along the symmetry axis is presented in the EC theory. The existence of closed timelike curves in this space–time are also examined.


Sign in / Sign up

Export Citation Format

Share Document