Time evolution of a warped cosmic string

2014 ◽  
Vol 23 (08) ◽  
pp. 1450066 ◽  
Author(s):  
Reinoud Jan Slagter

The time evolution of a self-gravitating U(1) cosmic string on a warped five-dimensional (5D) axially symmetric spacetime is numerically investigated. Although cosmic strings are theoretically predicted in four-dimensional (4D) general relativistic models, there is still no observational evidence of their existence. From recent observations of the cosmic microwave background (CMB), it is concluded that these cosmic strings cannot provide a satisfactory explanation for the bulk of density perturbations. They even could not survive inflation. It is conjectured that only in a 5D warped braneworld model there will be observable imprint of these so-called cosmic superstrings on the induced effective 4D brane metric for values of the symmetry breaking scale larger than the grand unified theory (GUT) values. The warp factor makes these strings consistent with the predicted mass per unit length on the brane. However, in a time-dependent setting, it seems that there is a wavelike energy–momentum transfer to infinity on the brane, a high-energy braneworld behavior. This in contrast to earlier results in approximation models. Evidence of this information from the bulk geometry could be found in the gravitational cosmic background radiation via gravitational wave energy–momentum affecting the brane evolution. Fluctuations of the brane when there is a U(1) gauge field present, are comparable with the proposed brane tension fluctuations, or branons, whose relic abundance can be a dark matter candidate. We briefly made a connection with the critical behavior at the threshold of black hole formation found by Choptuik several decades ago in self-gravitating time-dependent scalar field models. The critical distinction between dispersion of the scalar waves and singular behavior fade away when a time-dependent warp factor is present.

1997 ◽  
Vol 06 (05) ◽  
pp. 535-544
Author(s):  
Petri Mähönen ◽  
Tetsuya Hara ◽  
Toivo Voll ◽  
Shigeru Miyoshi

We have studied the cosmic microwave background radiation by simulating the cosmic string network induced anisotropies on the sky. The large-angular size simulations are based on the Kaiser–Stebbins effect calculated from full cosmic-string network simulation. The small-angular size simulations are done by Monte-Carlo simulation of perturbations from a time-discretized toy model. We use these results to find the normalization of μ, the string mass per unit length, and compare this result with one needed for large-scale structure formation. We show that the cosmic string scenario is in good agreement with COBE, SK94, and MSAM94 microwave background radiation experiments with reasonable string network parameters. The predicted rms-temperature fluctuations for SK94 and MSAM94 experiments are Δ T/T=1.57×10-5 and Δ T/T=1.62×10-5, respectively, when the string mass density parameter is chosen to be Gμ=1.4×10-6. The possibility of detecting non-Gaussian signals using the present day experiments is also discussed.


2012 ◽  
Vol 21 (07) ◽  
pp. 1250060 ◽  
Author(s):  
REINOUD JAN SLAGTER ◽  
DERK MASSELINK

We present the "classical" Nielsen–Olesen vortex solution on a warped 5-dimensional spacetime, where we solved the effective 4-dimensional equations from the 5-dimensional equations together with the junction and boundary conditions. 4-dimensional cosmic strings show some serious problems concerning the mechanism of string smoothing related to the string mass per unit length, Gμ ≤ 10-6. Moreover, there is no observational evidence of axially symmetric lensing effect caused by cosmic strings. Also super-massive cosmic strings (Gμ ≳ 1), predicted by superstring theory, possess some problems. They are studied because the universe may have undergone phase transitions at scales much higher than the GUT scale. But Gμ ≳ 1 is far above observational bounds, so one needs an inflationary scenario to smooth them out. Further, it is believed that these super-massive strings never extended to macroscopic size. Brane world models could overcome these problems. Gμ could be warped down to GUT scale, even if its value was at the Planck scale. In our warped cosmic string model, where the string mass per unit length in the bulk can be of order of the Planck scale, we find that the 4-dimensional brane spacetime is exponential warped down. Moreover, asymptotically the induced 4-dimensional spacetime does not show conical behavior. So there is no angle deficit compared to its value in the bulk and the spacetime seems to be unphysical, at least under fairly weak assumptions on the stress–energy tensor and without a positive brane tension. The results are confirmed by numerical solutions of the field equations.


2007 ◽  
Vol 22 (25n28) ◽  
pp. 2035-2038
Author(s):  
OSAMU SETO ◽  
JUN'ICHI YOKOYAMA

We investigated a simple D-term inflation with taking account of higher order corrections in the Kähler potential. These terms may solve the cosmic string problem in D-term inflation model. The mass per unit length of cosmic strings formed after inflation can be suppressed enough. In addition, the change of the potential slope leads simultaneously a more tilted scalar spectral index ns ≃ 0.96 – 0.97 than that in the model without these corrections.


1994 ◽  
Vol 09 (23) ◽  
pp. 4101-4127 ◽  
Author(s):  
TAKEHIKO T. FUJISHIRO ◽  
MITSUO J. HAYASHI ◽  
SHOJI TAKESHITA

The effective action from the string compactification is studied on the manifolds with absolute parallelism. The cosmic strings can be described naturally by torsion formalism which has a direct analogy with dislocations in three-dimensional crystalline solids. We have found a stringy solution in a six-dimensional model on M4 × T2 which is compatible with that of Greene et al. and a cylindrically symmetric exact solution is obtained, which are different from the exact cosmic string solutions of the Einstein theory ever proposed. We have also obtained an exact solution in a four-dimensional model on M2 × T2 which can be considered as an example of the compactification on the noncompact manifold and may be expected to describe a space–time structure of our universe. The relation between the mass per unit length and the deficit angle is different from but can be consistent with that of the Einstein theory, since our solution could reproduce its prediction with a condition. We could also obtain the maximum value of the mass per unit length μ ~ 10−6 (~ 1022 g/cm ) by fine-tuning a parameter, which is consistent with recent observations. We have discussed the cosmic strings with the deficit angle larger than 2π.


1994 ◽  
Vol 09 (18) ◽  
pp. 3203-3227 ◽  
Author(s):  
PAUL S. GREEN ◽  
TRISTAN HÜBSCH

In a general superstring vacuum configuration, the “internal” space (sector) varies in space-time. When this variation is nontrivial only in two spacelike dimensions, the vacuum contains static cosmic strings with finite energy per unit length and which is, up to interactions with matter, an easily computed topological invariant. The total space-time is smooth although the “internal” space is singular at the center of each cosmic string. In a similar analysis of the Wick-rotated Euclidean model, these cosmic strings acquire expected self-interactions. Also, a possibility emerges to define a global time in order to rotate back to the Lorentzian case.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Sébastien Descotes-Genon ◽  
Martín Novoa-Brunet ◽  
K. Keri Vos

Abstract We consider the time-dependent analysis of Bd→ KSℓℓ taking into account the time-evolution of the Bd meson and its mixing into $$ {\overline{B}}_d $$ B ¯ d . We discuss the angular conventions required to define the angular observables in a transparent way with respect to CP conjugation. The inclusion of time evolution allows us to identify six new observables, out of which three could be accessed from a time-dependent tagged analysis. We also show that these observables could be obtained by time-integrated measurements in a hadronic environment if flavour tagging is available. We provide simple and precise predictions for these observables in the SM and in NP models with real contributions to SM and chirally flipped operators, which are independent of form factors and charm-loop contributions. As such, these observables provide robust and powerful cross-checks of the New Physics scenarios currently favoured by global fits to b → sℓℓ data. In addition, we discuss the sensitivity of these observables with respect to NP scenarios involving scalar and tensor operators, or CP-violating phases. We illustrate how these new observables can provide a benchmark to discriminate among the various NP scenarios in b → sμμ. We discuss the extension of these results for Bs decays into f0, η or η′.


2020 ◽  
Vol 501 (1) ◽  
pp. 701-712
Author(s):  
N Yonemaru ◽  
S Kuroyanagi ◽  
G Hobbs ◽  
K Takahashi ◽  
X-J Zhu ◽  
...  

ABSTRACT Cosmic strings are potential gravitational-wave (GW) sources that can be probed by pulsar timing arrays (PTAs). In this work we develop a detection algorithm for a GW burst from a cusp on a cosmic string, and apply it to Parkes PTA data. We find four events with a false alarm probability less than 1 per cent. However further investigation shows that all of these are likely to be spurious. As there are no convincing detections we place upper limits on the GW amplitude for different event durations. From these bounds we place limits on the cosmic string tension of Gμ ∼ 10−5, and highlight that this bound is independent from those obtained using other techniques. We discuss the physical implications of our results and the prospect of probing cosmic strings in the era of Square Kilometre Array.


2012 ◽  
Vol 49 (03) ◽  
pp. 612-626
Author(s):  
Boris L. Granovsky ◽  
Alexander V. Kryvoshaev

We prove that a stochastic process of pure coagulation has at any timet≥ 0 a time-dependent Gibbs distribution if and only if the rates ψ(i,j) of single coagulations are of the form ψ(i;j) =if(j) +jf(i), wherefis an arbitrary nonnegative function on the set of positive integers. We also obtain a recurrence relation for weights of these Gibbs distributions that allow us to derive the general form of the solution and the explicit solutions in three particular cases of the functionf. For the three corresponding models, we study the probability of coagulation into one giant cluster by timet> 0.


Sign in / Sign up

Export Citation Format

Share Document