scholarly journals Group Contractions: Inonu, Wigner, and Einstein

1997 ◽  
Vol 12 (01) ◽  
pp. 71-78 ◽  
Author(s):  
Y.S. Kim

Einstein's E = mc2 unifies the momentum-energy relation for massive and massless particles. According to Wigner, the internal space–time symmetries of massive and massless particles are isomorphic to O(3) and E(2) respectively. According to Inonu and Wigner, O(3) can be contracted to E(2) in the large-radius limit. It is noted that the O(3)-like little group for massive particles can be contracted to the E(2)-like little group for massless particles in the limit of large momentum and/or small mass. It is thus shown that transverse rotational degress of freedom for massive particles become contracted to gauge degrees of freedom for massless particles.

2006 ◽  
Vol 21 (19n20) ◽  
pp. 4137-4160 ◽  
Author(s):  
SERGEY FEDORUK ◽  
ANDRZEJ FRYDRYSZAK ◽  
JERZY LUKIERSKI ◽  
CÈSAR MIQUEL-ESPANYA

We extend the Shirafuji model for massless particles with primary space–time coordinates and composite four-momenta to a model for massive particles with spin and electric charge. The primary variables in the model are the space–time four-vector, four scalars describing spin and charge degrees of freedom as well as a pair of Weyl spinors. The geometric description proposed in this paper provides an intermediate step between the free purely twistorial model in two-twistor space in which both space–time and four-momenta vectors are composite, and the standard particle model, where both space–time and four-momenta vectors are elementary. We quantize the model and find explicitly the first-quantized wave functions describing relativistic particles with mass, spin and electric charge. The space–time coordinates in the model are not commutative; this leads to a wave function that depends only on one covariant projection of the space–time four-vector (covariantized time coordinate) defining plane wave solutions.


1984 ◽  
Vol 52 (11) ◽  
pp. 1037-1043 ◽  
Author(s):  
D. Han ◽  
Y. S. Kim ◽  
Marilyn E. Noz ◽  
D. Son

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
G. Bruno De Luca ◽  
Nicolò De Ponti ◽  
Andrea Mondino ◽  
Alessandro Tomasiello

Abstract We consider gravity compactifications whose internal space consists of small bridges connecting larger manifolds, possibly noncompact. We prove that, under rather general assumptions, this leads to a massive spin-two field with very small mass. The argument involves a recently-noticed relation to Bakry-Émery geometry, a version of the so-called Cheeger constant, and the theory of synthetic Ricci lower bounds. The latter technique allows generalizations to non-smooth spaces such as those with D-brane singularities. For AdSd vacua with a bridge admitting an AdSd+1 interpretation, the holographic dual is a CFTd with two CFTd−1 boundaries. The ratio of their degrees of freedom gives the graviton mass, generalizing results obtained by Bachas and Lavdas for d = 4. We also prove new bounds on the higher eigenvalues. These are in agreement with the spin-two swampland conjecture in the regime where the background is scale-separated; in the opposite regime we provide examples where they are in naive tension with it.


Author(s):  
D. Han ◽  
Y. S. Kim ◽  
Marilyn E. Noz ◽  
D. Son

2009 ◽  
Vol 24 (18n19) ◽  
pp. 3243-3255 ◽  
Author(s):  
GERARD 't HOOFT

Matter interacting classically with gravity in 3+1 dimensions usually gives rise to a continuum of degrees of freedom, so that, in any attempt to quantize the theory, ultraviolet divergences are nearly inevitable. Here, we investigate a theory that only displays a finite number of degrees of freedom in compact sections of space-time. In finite domains, one has only exact, analytic solutions. This is achieved by limiting ourselves to straight pieces of string, surrounded by locally flat sections of space-time. Next, we suggest replacing in the string holonomy group, the Lorentz group by a discrete subgroup, which turns space-time into a 4-dimensional crystal with defects.


2005 ◽  
Vol 20 (26) ◽  
pp. 6039-6049 ◽  
Author(s):  
XIN ZHANG

A toy model based upon the q-deformation description for studying the radiation spectrum of black hole is proposed. The starting point is to make an attempt to consider the space–time noncommutativity in the vicinity of black hole horizon. We use a trick that all the space–time noncommutative effects are ascribed to the modification of the behavior of the radiation field of black hole and a kind of q-deformed degrees of freedom are postulated to mimic the radiation particles that live on the noncommutative space–time, meanwhile the background metric is preserved as usual. We calculate the radiation spectrum of Schwarzschild black hole in this framework. The new distribution deviates from the standard thermal spectrum evidently. The result indicates that some correlation effect will be introduced to the system if the noncommutativity is taken into account. In addition, an infrared cutoff of the spectrum is the prediction of the model.


2018 ◽  
Vol 33 (12) ◽  
pp. 1850061 ◽  
Author(s):  
Ryuichi Nakayama ◽  
Tomotaka Suzuki

We construct a localized state of a scalar field in 3D spin-3 gravity. 3D spin-3 gravity is thought to be holographically dual to [Formula: see text]-extended CFT on a boundary at infinity. It is known that while [Formula: see text] algebra is a nonlinear algebra, in the limit of large central charge [Formula: see text] a linear finite-dimensional subalgebra generated by [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text] is singled out. The localized state is constructed in terms of these generators. To write down an equation of motion for a scalar field which is satisfied by this localized state, it is necessary to introduce new variables for an internal space [Formula: see text], [Formula: see text], [Formula: see text], in addition to ordinary coordinates [Formula: see text] and [Formula: see text]. The higher-dimensional space, which combines the bulk space–time with the “internal space,” which is an analog of superspace in supersymmetric theory, is introduced. The “physical bulk space–time” is a 3D hypersurface with constant [Formula: see text], [Formula: see text] and [Formula: see text] embedded in this space. We will work in Poincaré coordinates of AdS space and consider [Formula: see text]-quasi-primary operators [Formula: see text] with a conformal weight [Formula: see text] in the boundary and study two and three point functions of [Formula: see text]-quasi-primary operators transformed as [Formula: see text]. Here, [Formula: see text] and [Formula: see text] are [Formula: see text] generators in the hyperbolic basis for Poincaré coordinates. It is shown that in the [Formula: see text] limit, the conformal weight changes to a new value [Formula: see text]. This may be regarded as a Renormalization Group (RG) flow. It is argued that this RG flow will be triggered by terms [Formula: see text] added to the action.


1999 ◽  
Vol 77 (6) ◽  
pp. 427-446
Author(s):  
S B Phillips

A model of a spinning string with an internal coordinate index is proposed and studied. When the action for this model is taken to be diagonal in this internal coordinate space and quantized in the light-cone gauge it is found to be Lorentz covariant in four-dimensional space-time provided that the internal coordinate space is four dimensional.This combination of space-time dimension, D, and internal coordinate space dimension, N, is just one of four possible sets, the other three corresponding to D = 3, 6, and 10, precisely the same values for which it is possible to formulate Yang-Mills theories with simple supersymmetry. By comparing the number of propagating degrees of freedom at the zero-mass level in the open string bosonic and fermionic sectors it is found that a supersymmetric interpretation of this model is possible provided that all physical states in the bosonic sector have even G-parity and the ground-state spin or in the fermionic sector have positive chirality. A possible interpretation of the connection betweenthe N components of each of the D space-time coordinates is presentedon the basis that the space-time coordinates are scalars in the internal coordinate space. This interpretation would appear to be reasonable given the fact that the field variables in the Lagrangian density do not necessarily have to represent physically measurable quantities but can, instead, only represent physically measurable quantities when combined in some manner, the simplest of which being a linear combination. The Lagrangian density simply produces the equations of motion and the constraint equations for the independent variables, only linear combinations of which represent the four dimensions of physical space-time.PACS Nos.: 11.17.+y, 11.10.Qr, 1.30.Cp, 11.30.Pb


Sign in / Sign up

Export Citation Format

Share Document