scholarly journals Transverse momentum broadening of a jet in quark-gluon plasma: an open quantum system EFT

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Varun Vaidya ◽  
Xiaojun Yao

Abstract We utilize the technology of open quantum systems in conjunction with the recently developed effective field theory for forward scattering to address the question of massless jet propagation through a weakly-coupled quark-gluon plasma in thermal equilibrium. We discuss various possible hierarchies of scales that may appear in this problem, by comparing thermal scales of the plasma with relevant scales in the effective field theory. Starting from the Lindblad equation, we derive and solve a master equation for the trans- verse momentum distribution of a massless quark jet, at leading orders both in the strong coupling and in the power counting of the effective field theory. Markovian approximation is justified in the weak coupling limit. Using the solution to the master equation, we study the transverse momentum broadening of a jet as a function of the plasma temperature and the time of propagation. We discuss the physical origin of infrared sensitivity that arises in the solution and a way to handle it in the effective field theory formulation. We suspect that the final measurement constraint can only cut-off leading infrared singularities and the solution to the Markovian master equation resums a logarithmic series. This work is a stepping stone towards understanding jet quenching and jet substructure observables on both light and heavy quark jets as probes of the quark-gluon plasma.

1997 ◽  
Vol 12 (08) ◽  
pp. 1431-1464 ◽  
Author(s):  
Agustin Nieto

Recent developments of perturbation theory at finite temperature based on effective field theory methods are reviewed. These methods allow the contributions from the different scales to be separated and the perturbative series to be reorganized. The construction of the effective field theory is shown in detail for ϕ4 theory and QCD. It is applied to the evaluation of the free energy of QCD at order g5 and the calculation of the g6 term is outlined. Implications for the application of perturbative QCD to the quark–gluon plasma are also discussed.


2011 ◽  
Vol 20 (07) ◽  
pp. 1610-1615 ◽  
Author(s):  
FRANCESCO D'ERAMO ◽  
HONG LIU ◽  
KRISHNA RAJAGOPAL

We analyze the transverse momentum broadening in the absence of radiation of an energetic parton propagating through quark-gluon plasma via Soft Collinear Effective Theory (SCET). We show that the probability for picking up transverse momentum k⊥ is given by the Fourier transform of the expectation value of two transversely separated light-like path-ordered Wilson lines. The subtleties about the ordering of operators do not change the [Formula: see text] value for the strongly coupled plasma of [Formula: see text] SYM theory.


2017 ◽  
Vol 32 (10) ◽  
pp. 1750056
Author(s):  
M. J. Luo

Based on an analogy with topologically ordered new state of matter in condensed matter systems, we propose a low energy effective field theory for a parity conserving liquid-like quark–gluon plasma (QGP) around critical temperature in quantum chromodynamics (QCD) system. It shows that below a QCD gap which is expected several times of the critical temperature, the QGP behaves like topological fluid. Many exotic phenomena of QGP near the critical temperature discovered at Relativistic Heavy Ion Collision (RHIC) are more readily understood by the suggestion that QGP is a topologically ordered state.


2017 ◽  
Vol 873 ◽  
pp. 012050 ◽  
Author(s):  
Massimiliano Grazzini ◽  
Agnieszka Ilnicka ◽  
Michael Spira ◽  
Marius Wiesemann

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Varun Vaidya

Abstract I develop an Effective Field Theory (EFT) framework to compute jet substructure observables for heavy ion collision experiments. As an example, I consider dijet events that accompany the formation of a weakly coupled long lived Quark Gluon Plasma (QGP) medium in a heavy ion collision and look at an observable insensitive to jet selection bias: the simultaneous measurement of jet mass along with the transverse momentum imbalance between the jets that are groomed to remove soft radiation. Treating the jet as an open quantum system, I write down a factorization formula within the SCET (Soft Collinear Effective Theory) framework in the forward scattering regime. The physics of the medium is encoded in a universal soft field correlator while the jet-medium interaction is captured by a medium induced jet function. The factorization formula leads to a Lindblad type equation for the evolution of the reduced density matrix of the jet in the Markovian approximation. The solution for this equation allows a resummation of large logarithms that arise due to the final state measurements imposed while simultaneously summing over multiple incoherent interactions of the jet with the medium.


2017 ◽  
Vol 95 (1) ◽  
Author(s):  
Michael Buchhold ◽  
Benjamin Everest ◽  
Matteo Marcuzzi ◽  
Igor Lesanovsky ◽  
Sebastian Diehl

Sign in / Sign up

Export Citation Format

Share Document