scholarly journals THE RICCION, THE INSTANTON AND PRIMORDIAL INFLATION

1999 ◽  
Vol 14 (06) ◽  
pp. 875-884 ◽  
Author(s):  
S. K. SRIVASTAVA

It is shown that R2 and R3 terms dominate over the Einstein–Hilbert term in the gravitational action till the energy mass scale M ≥ 8.4 × 108 GeV. In the presence of these higher derivative terms, the action for Riccions is obtained with quartic self-interaction potential. It is interesting to see that the instanton solution for Riccions gives rise to primordial inflation without any phase transition or symmetry breaking.

2012 ◽  
Vol 27 (26) ◽  
pp. 1250156 ◽  
Author(s):  
A. DOFF ◽  
A. A. NATALE

The gauge symmetry breaking in some versions of 3-3-1 models can be implemented dynamically because at the scale of a few TeVs the U(1)X coupling constant becomes strong. In this work, we consider the dynamical symmetry breaking in a minimal SU(3) TC × SU(3)L × U(1)X model, where we propose a new scheme to cancel the chiral anomalies, including two-index symmetric (6) technifermions, which incorporates naturally the walking behavior in the Technicolor (TC) sector. The composite scalar content of the model is minimal and all the symmetry breaking is implemented by a multiplet of technifermions. The choice of TC representations not only provides the anomaly cancelation with a walking behavior, but is crucial to promote the model's full dynamical symmetry breaking. We consider the dynamical generation of technigluon masses and, depending on the 3-3-1 symmetry breaking scale (μ331), we verify that the technigluon mass is strongly linked to the Z′ mass scale, for instance, if μ331 = 1 TeV , we have MZ′ > 1 TeV only if M TG < 350 GeV .


Author(s):  
JULIO C. FABRIS ◽  
PAULO L. C. DE OLIVEIRA ◽  
DAVI C. RODRIGUES ◽  
ALAN M. VELASQUEZ-TORIBIO ◽  
ILYA L. SHAPIRO

The quantum contributions to the gravitational action are relatively easy to calculate in the higher derivative sector of the theory. However, the applications to the post-inflationary cosmology and astrophysics require the corrections to the Einstein-Hilbert action and to the cosmological constant, and those we can not derive yet in a consistent and safe way. At the same time, if we assume that these quantum terms are covariant and that they have relevant magnitude, their functional form can be defined up to a single free parameter, which can be defined on the phenomenological basis. It turns out that the quantum correction may lead, in principle, to surprisingly strong and interesting effects in astrophysics and cosmology .


2019 ◽  
Vol 28 (09) ◽  
pp. 1950113 ◽  
Author(s):  
Bin Liang ◽  
Shao-Wen Wei ◽  
Yu-Xiao Liu

Using the quasinormal modes of a massless scalar perturbation, we investigate the small/large black hole phase transition in the Lorentz symmetry breaking massive gravity. We mainly focus on two issues: (i) the sign change of slope of the quasinormal mode frequencies in the complex-[Formula: see text] diagram; (ii) the behaviors of the imaginary part of the quasinormal mode frequencies along the isobaric or isothermal processes. For the first issue, our result shows that, at low fixed temperature or pressure, the phase transition can be probed by the sign change of slope. While increasing the temperature or pressure to certain values near the critical point, there will appear the deflection point, which indicates that such method may not be appropriate to test the phase transition. In particular, the behavior of the quasinormal mode frequencies for the small and large black holes tend to be the same at the critical point. For the second issue, it is shown that the nonmonotonic behavior is observed only when the small/large black hole phase transition occurs. Therefore, this property can provide us with an additional method to probe the phase transition through the quasinormal modes.


2019 ◽  
Vol 3 (10) ◽  
pp. 2077-2082 ◽  
Author(s):  
Yu-Wei Zhang ◽  
Qing Wang ◽  
Ping-Ping Shi ◽  
Wan-Ying Zhang ◽  
Qiong Ye ◽  
...  

Phase transition materials are a class of smart materials with special optoelectronic properties.


Nanophotonics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 495-504 ◽  
Author(s):  
Qiang Bai

AbstractWe theoretically and numerically demonstrate that the spontaneous parity-time (PT) symmetry breaking phase transition can be realized respectively by using two independent tuning ways in a tri-layered metamaterial that consists of periodic array of metal-semiconductor Schottky junctions. The existence conditions of PT symmetry and its phase transition are obtained by using a theoretical model based on the coupled mode theory. A hot-electron photodetection based on the same tri-layered metamaterial is proposed, which can directly show the spontaneous PT symmetry breaking phase transition in photocurrent and possesses dynamical tunability and switchability. This work extends the concept of PT symmetry into the hot-electron photodetection, enriches the functionality of the metamaterial and the hot-electron device, and has varieties of potential and important applications in optoelectronics, photodetection, photovoltaics, and photocatalytics.


2006 ◽  
Vol 96 (15) ◽  
Author(s):  
Kihwan Kim ◽  
Myoung-Sun Heo ◽  
Ki-Hwan Lee ◽  
Kiyoub Jang ◽  
Heung-Ryoul Noh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document