QUANTUM AND THERMAL STATE FOR EXPONENTIALLY DAMPED HARMONIC OSCILLATOR WITH AND WITHOUT INVERSE QUADRATIC POTENTIAL

2002 ◽  
Vol 16 (09) ◽  
pp. 1341-1351 ◽  
Author(s):  
J. R. CHOI

By taking advantage of dynamical invariant operator, we derived Schrödinger solution for exponentially damped harmonic oscillator with and without inverse quadratic potential. We investigated quantum mechanical energy expectation value, uncertainty relation, partition function and density operator of the system. The various expectation values in thermal state are calculated using the diagonal element of density operator.

2000 ◽  
Vol 78 (10) ◽  
pp. 937-946 ◽  
Author(s):  
P Mohazzabi

To date, the only potential energy function that has been demonstrated to be classical harmonic but not quantum harmonic is that of the asymmetrically matched harmonic oscillator. By investigating the accurate quantum mechanical energy levels of the potential V = V0 [Formula: see text], we demonstrate that this is the second member of the class. PACS No.: 03.65Ge


2004 ◽  
Vol 18 (07) ◽  
pp. 1007-1020 ◽  
Author(s):  
JEONG-RYEOL CHOI

The quantum states with discrete and continuous spectrum for the damped harmonic oscillator perturbed by a singularity have been investigated using invariant operator and unitary operator together. The eigenvalue of the invariant operator for ω0≤β/2 is continuous while for ω0>β/2 is discrete. The wave functions for ω0=β/2 expressed in terms of the Bessel function and for ω0<β/2 in terms of the Kummer confluent hypergeometric function. The convergence of the probability density is more rapid for over-damped harmonic oscillator than that of the other two cases due to the large damping constant.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Jeong Ryeol Choi ◽  
Ji Nny Song ◽  
Yeontaek Choi

Density operator of oscillatory optical systems with time-dependent parameters is analyzed. In this case, a system is described by a time-dependent Hamiltonian. Invariant operator theory is introduced in order to describe time-varying behavior of the system. Due to the time dependence of parameters, the frequency of oscillation, so-called a modified frequency of the system, is somewhat different from the natural frequency. In general, density operator of a time-dependent optical system is represented in terms of the modified frequency. We showed how to determine density operator of complicated time-dependent optical systems in thermal state. Usually, density operator description of quantum states is more general than the one described in terms of the state vector.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 855
Author(s):  
Ya-Wei Hsueh ◽  
Che-Hsiu Hsueh ◽  
Wen-Chin Wu

We propose a possible scheme to study the thermalization in a quantum harmonic oscillator with random disorder. Our numerical simulation shows that through the effect of random disorder, the system can undergo a transition from an initial nonequilibrium state to a equilibrium state. Unlike the classical damped harmonic oscillator where total energy is dissipated, total energy of the disordered quantum harmonic oscillator is conserved. In particular, at equilibrium the initial mechanical energy is transformed to the thermodynamic energy in which kinetic and potential energies are evenly distributed. Shannon entropy in different bases are shown to yield consistent results during the thermalization.


2003 ◽  
Vol 17 (12) ◽  
pp. 2429-2437 ◽  
Author(s):  
JEONG RYEOL CHOI

We investigated the coherent states of nonconservative harmonic oscillator with a singular perturbation. The invariant operator represented in terms of lowering and raising operators. We confirmed that if the difference between two eigenvalues, α and β, of coherent states is much larger than unity, the states |α> and |β> are approximately orthogonal to each another. We calculated the expectation values of various quantities such as invariant operator, Hamiltonian and mechanical energy in coherent state. The mechanical energy of the system described by the Kanai–Caldirola Hamiltonian decreased exponentially depending on γ as time goes by in coherent state.


2014 ◽  
Vol 4 (1) ◽  
pp. 404-426
Author(s):  
Vincze Gy. Szasz A.

Phenomena of damped harmonic oscillator is important in the description of the elementary dissipative processes of linear responses in our physical world. Its classical description is clear and understood, however it is not so in the quantum physics, where it also has a basic role. Starting from the Rosen-Chambers restricted variation principle a Hamilton like variation approach to the damped harmonic oscillator will be given. The usual formalisms of classical mechanics, as Lagrangian, Hamiltonian, Poisson brackets, will be covered too. We shall introduce two Poisson brackets. The first one has only mathematical meaning and for the second, the so-called constitutive Poisson brackets, a physical interpretation will be presented. We shall show that only the fundamental constitutive Poisson brackets are not invariant throughout the motion of the damped oscillator, but these show a kind of universal time dependence in the universal time scale of the damped oscillator. The quantum mechanical Poisson brackets and commutation relations belonging to these fundamental time dependent classical brackets will be described. Our objective in this work is giving clearer view to the challenge of the dissipative quantum oscillator.


1994 ◽  
Vol 35 (3) ◽  
pp. 1185-1191 ◽  
Author(s):  
L. Chetouani ◽  
L. Guechi ◽  
T. F. Hammann ◽  
M. Letlout

Sign in / Sign up

Export Citation Format

Share Document