QUANTUM DYNAMICS OF A SINGLE COOPER-PAIR BOX WITH A SINGLE-MODE CAVITY FIELD

2002 ◽  
Vol 16 (31) ◽  
pp. 4767-4774 ◽  
Author(s):  
MENG ZHANG ◽  
JIAN ZOU ◽  
BIN SHAO

We consider a single Cooper-pair box biased by a classical voltage and also irradiated by a single-mode quantized field. We investigate the quantum dynamics of the Cooper-pair box and show that the collapse and revival phenomena can exist in this system, which is sensitive to the detuning between the Josephson energy EJ and cavity field frequency ω.

2003 ◽  
Vol 17 (14) ◽  
pp. 2699-2713 ◽  
Author(s):  
Meng Zhang ◽  
Jian Zou ◽  
Bin Shao

We consider a single-Cooper-pair box biased by a classical voltage and also irradiated by a single-mode quantized field. We assume that the box is initially in a mixed state, and investigate the quantum dynamics of the Cooper-pair box and show that the collapse and revival phenomenon can exist in this system. We also study the quantum entropy of the single-Cooper-pair box and discuss the effects of the different parameters on this quantum entropy. We find that the box, which is initially in a mixed state, may evolve into an almost pure state.


2011 ◽  
Vol 25 (21) ◽  
pp. 2889-2894
Author(s):  
ZHAOXIN LI ◽  
YAN XU ◽  
LUYIN ZHANG ◽  
DA CHEN

A system composed of a single-Cooper-pair box irradiated by a single-mode quantized field has been considered. The entanglement relative to the mixedness μ and the detuning δ is investigated with negative partial transpose. It is found that in the case of initial mixed state, the entanglement is weakened, but increases as time evolves. For a detuned system, the entanglement is further suppressed but more stationary than that for a resonant system.


2003 ◽  
Vol 12 (6) ◽  
pp. 649-654 ◽  
Author(s):  
Yao Yan-Sun ◽  
Zou Jian ◽  
Shao Bin

2015 ◽  
Vol 29 (29) ◽  
pp. 1550175 ◽  
Author(s):  
N. H. Abd El-Wahab ◽  
Ahmed Salah

We study the interaction between a single mode electromagnetic field and a three-level [Formula: see text]-type atom in the presence of a classical homogenous gravitational field when the atom is prepared initially in the momentum eigenstate. The model includes the detuning parameters and the classical homogenous gravitational field. The wave function is calculated by using the Schrödinger equation for a coherent electromagnetic field and an atom is in its excited state. The influence of the detuning parameter and the classical homogenous gravitational field on the temporal behavior of the mean photon number, the normalized second-order correlation function and the normal squeezing is analyzed. The results show that the presence of these parameters has an important effect on these phenomena. The conclusion is reached and some features are given.


2008 ◽  
Vol 22 (26) ◽  
pp. 2587-2599 ◽  
Author(s):  
N. H. ABDEL-WAHAB

In this article, the problem of a double Ξ-type four-level atom interacting with a single-mode cavity field is considered. The considered model describes several distinct configurations of a four-level atom. Also, this model includes the detuning parameters of the atom-field system. We obtain the constants of motion and the wavefunction is derived when the atom is initially prepared in the upper state. We used this model for computing a number of the field aspects for the considered system. As an illustration, the model is used for studying the time evolution of the Mandel Q-parameter, amplitude-squared squeezing phenomenon and Q-function when the input field is considered in a coherent state. The results show that these phenomena are affected by the presence of detuning parameters.


2013 ◽  
Vol 11 (04) ◽  
pp. 1350038 ◽  
Author(s):  
HEBA KADRY ◽  
NORDIN ZAKARIA ◽  
LEE YEN CHEONG ◽  
MAHMOUD ABDEL-ATY

We study the dynamical properties of a cavity field coupling to a Cooper pair box (CPB). We assumed that the CPB is prepared initially in a mixed state with a coherent state for the field. By solving the time-dependent equations using the evolution operator, it shows that mean numbers of Cooper pairs is affected by the detuning. The mean number of Cooper pairs is further enhanced by the multi-photon processes in commonly used cavity field.


2017 ◽  
Vol 15 (08) ◽  
pp. 1740012
Author(s):  
V. I. Koroli ◽  
S. Palistrant ◽  
A. Nistreanu

We study the two-photon interaction between a three-level equidistant radiator (atom, molecule) with different dipole transitions and the single-mode cavity field. It is supposed that the three-level radiator is laser cooled and trapped into the ground vibrational state, in which the vibrational quantum number [Formula: see text]. In the proposed two-photon Jaynes–Cummings model (JCM) of a three-level atom at the initial moment [Formula: see text], the quantized cavity field is prepared in the squeezed vacuum state and the three-level radiator in the first excited state [Formula: see text]. By using the exact analytical solution for the state-vector of the coupled atom-field system, the amplitude-squared squeezing of the quantized cavity field is examined as a function of the [Formula: see text] and [Formula: see text] parameters. In this situation, higher-order squeezing has the tendency towards oscillations, but the exact periodicity of these oscillations is violated by the analogy with the second-order squeezing.


Sign in / Sign up

Export Citation Format

Share Document