DYNAMICAL PROPERTIES OF MULTI-PHOTON INTERACTION BETWEEN A CAVITY FIELD AND A SINGLE-QUBIT

2013 ◽  
Vol 11 (04) ◽  
pp. 1350038 ◽  
Author(s):  
HEBA KADRY ◽  
NORDIN ZAKARIA ◽  
LEE YEN CHEONG ◽  
MAHMOUD ABDEL-ATY

We study the dynamical properties of a cavity field coupling to a Cooper pair box (CPB). We assumed that the CPB is prepared initially in a mixed state with a coherent state for the field. By solving the time-dependent equations using the evolution operator, it shows that mean numbers of Cooper pairs is affected by the detuning. The mean number of Cooper pairs is further enhanced by the multi-photon processes in commonly used cavity field.

2003 ◽  
Vol 17 (14) ◽  
pp. 2699-2713 ◽  
Author(s):  
Meng Zhang ◽  
Jian Zou ◽  
Bin Shao

We consider a single-Cooper-pair box biased by a classical voltage and also irradiated by a single-mode quantized field. We assume that the box is initially in a mixed state, and investigate the quantum dynamics of the Cooper-pair box and show that the collapse and revival phenomenon can exist in this system. We also study the quantum entropy of the single-Cooper-pair box and discuss the effects of the different parameters on this quantum entropy. We find that the box, which is initially in a mixed state, may evolve into an almost pure state.


2002 ◽  
Vol 16 (31) ◽  
pp. 4767-4774 ◽  
Author(s):  
MENG ZHANG ◽  
JIAN ZOU ◽  
BIN SHAO

We consider a single Cooper-pair box biased by a classical voltage and also irradiated by a single-mode quantized field. We investigate the quantum dynamics of the Cooper-pair box and show that the collapse and revival phenomena can exist in this system, which is sensitive to the detuning between the Josephson energy EJ and cavity field frequency ω.


2020 ◽  
Vol 18 (03) ◽  
pp. 2050003
Author(s):  
S. T. Korashy ◽  
T. M. El-Shahat ◽  
N. Habiballah ◽  
H. El-Sheikh ◽  
M. Abdel-Aty

In this paper, we present some properties through two two-level atoms interacting with a two-mode quantized cavity field. We study this system in the presence of detuning parameter, Kerr nonlinearity, Stark shift, relative phase and intensity-dependent atoms-field coupling. Also, the coupling parameter is modulated to be time dependent. The exact solution of this model is given by using the Schrődinger equation when the atoms and the field are initially prepared in superposition states and coherent states, respectively. We employed the results to calculate some aspects such as linear entropy, total atomic inversion and cross-correlation function.


2020 ◽  
Vol 31 (12) ◽  
pp. 2050176
Author(s):  
J. L. S. Soares ◽  
R. D. dos Santos ◽  
F. J. S. Sousa ◽  
M. O. Sales ◽  
F. A. B. F. Moura

In this paper, we present a detailed study of the electronic dynamics in systems with correlated disorder generated from the Ornstein–Uhlenbeck process (OU). In short, we used numeric methods for solving the time-dependent Schrödinger equation. We apply a Taylor’s expansion of the evolution operator in order to solve the differential equation. We calculate some typical tools, such as the participation function [Formula: see text], the mean square displacement [Formula: see text] and the probability of return [Formula: see text]. In our analysis, we show that for low correlations the system behaves as in the standard Anderson model (i.e. all eigenstates are localized). For strong correlations, our results suggest the existence of a quasi-ballistic dynamics.


2004 ◽  
Vol 18 (20n21) ◽  
pp. 2901-2914
Author(s):  
R. A. ZAIT

We study the interaction of a moving four-level atom with a single mode cavity field. Involving intensity dependent coupling, the atom-field wave function and the reduced density matrix of the field are obtained when the atom is initially prepared in a coherent superposition of the upper and ground states and the field is initially in a coherent state. The influence of the intensity dependent atom-field coupling and of the detuning on the collapse and revival phenomenon of the time evolution of statistical aspects, such as the mean photon number, the second-order correlation function of the field, the momentum increment and momentum diffusion, are investigated. It is found that, for the nonresonant case, the detuning between the field and the atom has a significant influence which leads to increasing the collapse time with decreasing amplitude. Numerical computations and discussion of the results are presented.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1435
Author(s):  
Victor G. Yarzhemsky

Sr2RuO4 and Fe-pnictide superconductors belong to the same point group symmetry D4h. Many experimental data confirm odd pairs in Sr2RuO4 and even pairs in Fe-pnictides, but opposite conclusions also exist. Recent NMR results of Pustogow et al., which revealed even Cooper pairs in Sr2RuO4, require reconsideration of symmetry treatment of its SOP (superconducting order parameter). In the present work making use of the Mackey–Bradley theorem on symmetrized squares, a group theoretical investigation of possible pairing states in D4h symmetry is performed. It is obtained for I4/mmm , i.e., space group of Sr2RuO4, that triplet pairs with even spatial parts are possible in kz direction and in points M and Y. For the two latter cases pairing of equivalent electrons with nonzero total momentum is proposed. In P4/nmm space group of Fe- pnictides in point M, even and odd pairs are possible for singlet and triplet cases. It it shown that even and odd chiral states with angular momentum projection m=±1 have nodes in vertical planes, but Eg is nodal , whereas Eu is nodeless in the basal plane. It is also shown that the widely accepted assertion that the parity of angular momentum value is directly connected with the spatial parity of a pair is not valid in a space-group approach to the wavefunction of a Cooper pair.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 841
Author(s):  
Toshiaki Hishida

In this expository paper, we study Lq-Lr decay estimates of the evolution operator generated by a perturbed Stokes system in n-dimensional exterior domains when the coefficients are time-dependent and can be unbounded at spatial infinity. By following the approach developed by the present author for the physically relevant case where the rigid motion of the obstacle is time-dependent, we clarify that some decay properties of solutions to the same system in whole space Rn together with the energy relation imply the desired estimates in exterior domains provided n≥3.


2012 ◽  
Vol 22 (09) ◽  
pp. 1250207 ◽  
Author(s):  
DIEGO F. M. OLIVEIRA ◽  
MARKO ROBNIK

We study some dynamical properties of a classical time-dependent elliptical billiard. We consider periodically moving boundary and collisions between the particle and the boundary are assumed to be elastic. Our results confirm that although the static elliptical billiard is an integrable system, after introducing time-dependent perturbation on the boundary the unlimited energy growth is observed. The behavior of the average velocity is described using scaling arguments.


Sign in / Sign up

Export Citation Format

Share Document