FIRST-PRINCIPLES STUDY OF STRUCTURES AND ELECTRONIC PROPERTIES FOR NITRIDE-DOPED ALUMINUM CLUSTERS

2005 ◽  
Vol 19 (15n17) ◽  
pp. 2380-2385 ◽  
Author(s):  
BAOLIN WANG ◽  
DALING SHI ◽  
XIAOSHUANG CHEN ◽  
GUANGHOU WANG ◽  
JIJUN ZHAO

By using Gaussian98 package at BPW91 6-31g(d,p) level combined a genetic algorithm (GA) simulation, we have studied the lowest energy structural and electronic properties of the Al n N ( n =2-13) clusters. The ground-state structures, the charge transfers from Al to N site, HOMO-LUMO gap and the covalent, ionic and metallic nature with cluster size and atomic structure are investigated. Al 7 N , Al 9 N and Al 12 N cluster is found particularly stable among the Al n N clusters.

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1596 ◽  
Author(s):  
Jialin Yan ◽  
Jingjing Xia ◽  
Qinfang Zhang ◽  
Binwen Zhang ◽  
Baolin Wang

Based on the genetic algorithm (GA) incorporated with density functional theory (DFT) calculations, the structural and electronic properties of neutral and charged arsenic clusters Asn (n = 2–24) are investigated. The size-dependent physical properties of neutral clusters, such as the binding energy, HOMO-LUMO gap, and second difference of cluster energies, are discussed. The supercluster structures based on the As8 unit and As2 bridge are found to be dominant for the larger cluster Asn (n ≥ 8). Furthermore, the possible geometric structures of As28, As38, and As180 are predicted based on the growth pattern.


1993 ◽  
Vol 07 (26) ◽  
pp. 4305-4329 ◽  
Author(s):  
C.Z. WANG ◽  
B.L. ZHANG ◽  
K.M. HO ◽  
X.Q. WANG

The recent development in understanding the structures, relative stability, and electronic properties of large fullerenes is reviewed. We describe an efficient scheme to generate the ground-state networks for fullerene clusters. Combining this scheme with quantum-mechanical total-energy calculations, the ground-state structures of fullerenes ranging from C 20 to C 100 have been studied. Fullerenes of sizes 60, 70, and 84 are found to be energetically more stable than their neighbors. In addition to the energies, the fragmentation stability and the chemical reactivity of the clusters are shown to be important in determining the abundance of fullerene isomers.


2014 ◽  
Vol 95 ◽  
pp. 509-516 ◽  
Author(s):  
Youcef Cherchab ◽  
Mohamed Azzouz ◽  
Rafael González-Hernández ◽  
Khedija Talbi

2013 ◽  
Vol 27 (15) ◽  
pp. 1362007
Author(s):  
JUN LIU ◽  
SHENG-BIAO TAN ◽  
HUI-NING DONG

The ground state geometric structures of the nanoparticles or clusters CO n(n = 1-6) were given based on the first-principles calculations. Then the magnetic properties of the clusters CO n(n = 1-6) and ( CO n)-2(n = 1-6) were calculated in system. Results show that their ground state structures are closely related to the numbers of O-ions. These clusters have no magnetic moments and half-metallicity if they are electroneutral. However, they have magnetic moments if they have positive or negative charges. The total magnetic moments of the clusters ( CO n)-2(n = 1-6, but n≠3) are all 2.0000 μB, and all their ions have contributions to the total magnetic moments. The main reason is that the molecular orbitals with lower energy filled with paired electrons and the molecular orbitals with higher energy are occupied by two electrons in parallel.


RSC Advances ◽  
2021 ◽  
Vol 11 (60) ◽  
pp. 37981-37987
Author(s):  
Thi-Nga Do ◽  
Son-Tung Nguyen ◽  
Cuong Q. Nguyen

We perform a first principles study to investigate the atomic structure, electronic properties and contact types of the graphene/F-diamane-like C4F2 heterostructure.


2021 ◽  
Vol 8 ◽  
Author(s):  
Muhammad Imran ◽  
Muhammad Jawwad Saif ◽  
Tahir Farooq ◽  
Javed Iqbal

Thiols are efficient capping agents used for the synthesis of semiconductor and metal nanoparticles. Commonly, long-chain thiols are used as passivating agents to provide stabilization to nanoparticles. Theoretical methods rarely reported aromatic thiol ligands’ effects on small-sized CdTe quantum dots’ structural and electronic properties. We have studied and compared the structural and electronic properties of (i) bare and (ii) aromatic thiols (thiophenol, 4-methoxybenzenethiol, 4-mercaptobenzonitrile, and 4-mercaptobenzoic acid) capped CdnTen quantum dots (QDs). Aromatic thiols are used as thiol-radical because of the higher tendency of thiol-radicals to bind with Cd atoms. This work provides an understanding of how the capping agents affect specific properties. The results show that all aromatic thiol-radical ligands caused significant structural distortion in the geometries. The aromatic thiol-radical ligands stabilize LUMOs, stabilize or destabilize HOMOs, and decrease HOMO-LUMO gaps for all the capped QDs. The stabilization of LUMOs is more pronounced than the destabilization of HOMOs. We also studied the effect of solvent on structural and electronic properties. TD-DFT calculations were performed to calculate the absorption spectra of bare and capped QDs, and all the capping ligands resulted in the redshift of absorption spectra.


2019 ◽  
Vol 16 (2) ◽  
pp. 77 ◽  
Author(s):  
Muhammad Zamir Mohyedin ◽  
Afiq Radzwan ◽  
Mohammad Fariz Mohamad Taib ◽  
Rosnah Zakaria ◽  
Nor Kartini Jaafar ◽  
...  

Bi2Se3 is one of the promising materials in thermoelectric devices and very useful out of environmental concern due to its efficiency to perform at room temperature. Based on the first-principles calculation of density functional theory (DFT) by using CASTEP computer code, structural and electronic properties of Bi2Se3 were investigated. The calculation is conducted within the exchange-correlation of local density approximation (LDA) and generalized gradient approximation within the revision of Perdew-Burke-Ernzerhof (GGA-PBE) functional. It was found that the results are consistent with previous works of theoretical study with small percentage difference. LDA exchange-correlation functional method is more accurate and have a better agreement than GGA-PBE to describe the structural properties of Bi2Se3 which consist of lattice parameters. LDA functional also shown more accurate electronic structure of Bi2Se3 that consist of band structure and density of states (DOS) which consistent with most previous theoretical works with small percentage difference. This study proves the reliability of CASTEP computer code and show LDA exchange-correlation functional is more accurate in describing the nature of Bi2Se3 compared to the other functionals.


Sign in / Sign up

Export Citation Format

Share Document