SELF-ORGANIZATION AND NONEQUILIBRIUM STRUCTURES IN THE PHASE SPACE

2008 ◽  
Vol 22 (13) ◽  
pp. 2025-2045 ◽  
Author(s):  
V. NOVIKOV ◽  
S. KRUCHININ ◽  
N. N. BOGOLUBOV ◽  
S. ADAMENKO

We consider the possibilities of the formation of quasistationary distributions of particles over energy with power asymptotics in nonequilibrium systems and dynamical systems with couplings. It is shown that the Tsallis distribution is related to the exact solutions of a kinetic equation of the Boltzmann type and those of covariant kinetic equations of the Vlasov nonlocal statistical mechanics. We have studied the connection of the power-like solutions of kinetic equations with the eigenfunctions of fractional integro-differential operators and Jackson operators within quantum analysis, and that of nonextensiveness parameters in the framework of the Tsallis thermostatics, with flows in the phase space. It is shown that the processes running in a nonequilibrium nonconservative medium can be described by the solutions of the equation with fractional derivatives or Jackson derivatives for oscillations.

Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 716 ◽  
Author(s):  
Rudolf A. Treumann ◽  
Wolfgang Baumjohann

The entropy force is the collective effect of inhomogeneity in disorder in a statistical many particle system. We demonstrate its presumable effect on one particular astrophysical object, the black hole. We then derive the kinetic equations of a large system of particles including the entropy force. It adds a collective therefore integral term to the Klimontovich equation for the evolution of the one-particle distribution function. Its integral character transforms the basic one particle kinetic equation into an integro-differential equation already on the elementary level, showing that not only the microscopic forces but the hole system reacts to its evolution of its probability distribution in a holistic way. It also causes a collisionless dissipative term which however is small in the inverse particle number and thus negligible. However it contributes an entropic collisional dissipation term. The latter is defined via the particle correlations but lacks any singularities and thus is large scale. It allows also for the derivation of a kinetic equation for the entropy density in phase space. This turns out to be of same structure as the equation for the phase space density. The entropy density determines itself holistically via the integral entropy force thus providing a self-controlled evolution of entropy in phase space.


1974 ◽  
Vol 11 (3) ◽  
pp. 377-387 ◽  
Author(s):  
R. Balescu ◽  
J. H. Misguich

The general theory developed in part 1 is illustrated for a plasma described by the weak-coupling (Landau) approximation. The kinetic equation, valid for arbitrarily strong external fields, is written out explicitly.


2021 ◽  
Vol 10 (5) ◽  
pp. 2593-2610
Author(s):  
Wagdi F.S. Ahmed ◽  
D.D. Pawar ◽  
W.D. Patil

In this study, a new and further generalized form of the fractional kinetic equation involving the generalized V$-$function has been developed. We have discussed the manifold generality of the generalized V$-$function in terms of the solution of the fractional kinetic equation. Also, the graphical interpretation of the solutions by employing MATLAB is given. The results are very general in nature, and they can be used to generate a large number of known and novel results.


2021 ◽  
Vol 5 (1) ◽  
pp. 279-287
Author(s):  
Zeinab Toghani ◽  
◽  
Luis Gaggero-Sager ◽  

There are many possible definitions of derivatives, here we present some and present one that we have called generalized that allows us to put some of the others as a particular case of this but, what interests us is to determine that there is an infinite number of possible definitions of fractional derivatives, all are correct as differential operators each of them must be properly defined its algebra. We introduce a generalized version of fractional derivative that extends the existing ones in the literature. To those extensions it is associated a differentiable operator and a differential ring and applications that shows the advantages of the generalization. We also review the different definitions of fractional derivatives and it is shown how the generalized version contains the previous ones as a particular cases.


2013 ◽  
Vol 112 (1) ◽  
pp. 112 ◽  
Author(s):  
Wen Deng

We find some explicit bounds on the $\mathcal{L}(L^2)$-norm of pseudo-differential operators with symbols defined by a metric on the phase space. In particular, we prove that this norm depends only on the "structure constants" of the metric and a fixed semi-norm of the symbol. Analogous statements are made for the Fefferman-Phong inequality.


1967 ◽  
Vol 45 (11) ◽  
pp. 3555-3567 ◽  
Author(s):  
R. A. Elliott ◽  
Luis de Sobrino

A classical gas whose particles interact through a weak long-range attraction and a strong short-range repulsion is studied. The Liouville equation is solved as an infinite-order perturbation expansion. The terms in this series are classified by Prigogine-type diagrams according to their order in the ratio of the range of the interaction to the average interparticle distance. It is shown that, provided the range of the short-range force is much less than the average interparticle distance which, in turn, is much less than the range of the long-range force, the terms can be grouped into two classes. The one class, represented by chain diagrams, constitutes the significant contributions of the short-range interaction; the other, represented by ring diagrams, makes up, apart from a self-consistent field term, the significant contributions from the long-range force. These contributions are summed to yield a kinetic equation. The orders of magnitude of the terms in this equation are compared for various ranges of the parameters of the system. Retaining only the dominant terms then produces a set of eight kinetic equations, each of which is valid for a definite range of the parameters of the system.


2004 ◽  
Vol 38 (1-4) ◽  
pp. 85-99 ◽  
Author(s):  
B. F. Feeny ◽  
G. Lin

2021 ◽  
Author(s):  
Sergei Annenkov ◽  
Victor Shrira ◽  
Leonel Romero ◽  
Ken Melville

<p>We consider the evolution of directional spectra of waves generated by constant and changing wind, modelling it by direct numerical simulation (DNS), based on the Zakharov equation. Results are compared with numerical simulations performed with the Hasselmann kinetic equation and the generalised kinetic equation, and with airborne measurements of waves generated by offshore wind, collected during the GOTEX experiment off the coast of Mexico. Modelling is performed with wind measured during the experiment, and the initial conditions are taken as the observed spectrum at the moment when wind waves prevail over swell after the initial part of the evolution.</p><p>Directional spreading is characterised by the second moment of the normalised angular distribution function, taken at selected wavenumbers relative to the spectral peak. We show that for scales longer than the spectral peak the angular spread predicted by the DNS is close to that predicted by both kinetic equations, but it underestimates the corresponding measured value, apparently due to the presence of swell. For the spectral peak and shorter waves, the DNS shows good agreement with the data. A notable feature is the steady growth of angular width at the spectral peak with time/fetch, in contrast to nearly constant width in the kinetic equations modelling. Dependence of angular width on wavenumber is shown to be much weaker than predicted by the kinetic equations. A more detailed consideration of the angular structure at the spectral peak at large fetches shows that the kinetic equations predict an angular distribution with a well-defined peak at the central angle, while the DNS reproduces the observed angular structure, with a flat peak over a range of angles.</p><p>In order to study in detail the differences between the predictions of the DNS and the kinetic equations modelling under idealised conditions, we also perform numerical simulations for the case of constant wind forcing. As in the previous case of forcing by real wind, the most striking difference between the kinetic equations and the DNS is the steady growth with time of angular width at the spectral peak, which is demonstrated by the DNS, but is not present in the modelling with the kinetic equations. We show that while the kinetic theory, both in the case of the Hasselmann equation and the generalised kinetic equation, predicts a relatively simple shape of the spectral peak, the DNS shows a more complicated structure, with a flat top and dependence of the peak position on angle. We discuss the approximations employed in the derivation of the kinetic theory and the possible causes of the found differences of directional structure.</p>


2021 ◽  
Author(s):  
Zaid Odibat

Abstract This study introduces some remarks on generalized fractional integral and differential operators, that generalize some familiar fractional integral and derivative operators, with respect to a given function. We briefly explain how to formulate representations of generalized fractional operators. Then, mainly, we propose a predictor-corrector algorithm for the numerical simulation of initial value problems involving generalized Caputo-type fractional derivatives with respect to another function. Numerical solutions of some generalized Caputo-type fractional derivative models have been introduced to demonstrate the applicability and efficiency of the presented algorithm. The proposed algorithm is expected to be widely used and utilized in the field of simulating fractional-order models.


Sign in / Sign up

Export Citation Format

Share Document