QUASICLASSICAL FOURIER PATH INTEGRAL QUANTUM CORRECTION TERMS TO THE KINETIC ENERGY OF INTERACTING QUANTUM MANY-BODY SYSTEMS

2009 ◽  
Vol 23 (20n21) ◽  
pp. 3979-3991
Author(s):  
K. A. GERNOTH

A quasiclassical expression for the kinetic energy of interacting quantum many-body systems is derived from the full quantum expression for the kinetic energy as derived by means of the Fourier path integral representation of the canonical many-body density matrix of such systems. This quasiclassical form of the kinetic energy may be cast in the shape of thermodynamic expectation values w.r.t. to the classical Boltzmann distribution of the many-body system, which involves only the many-body interaction in contrast to the full Fourier path integral quantum distribution, which carries contributions also from the many-body kinetic energy operator. The quasiclassical quantum correction terms to the classical Boltzmann equipartition value are valid when the product of temperature and particle mass is large and then lead to significant technical simplifications and increase of speed of Monte Carlo computations of the quantum kinetic energy. The formal findings are tested numerically in quantum Fourier path integral versus classical Monte Carlo simulations.

2003 ◽  
Vol 237 (1) ◽  
pp. 23-38 ◽  
Author(s):  
Luca Capriotti ◽  
Alessandro Cuccoli ◽  
Andrea Fubini ◽  
Valerio Tognetti ◽  
Ruggero Vaia

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 984
Author(s):  
Regina Finsterhölzl ◽  
Manuel Katzer ◽  
Andreas Knorr ◽  
Alexander Carmele

This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account. Its adaption to a non-Markovian type of interaction between the many-body system and the reservoir is demonstrated, where the information backflow from the reservoir needs to be included in the computation. Also, the derivation of the basis in the quantum stochastic Schrödinger picture is shown. As a paradigmatic model, the Heisenberg spin chain with nearest-neighbor interaction is used. It is demonstrated that the algorithm allows for the access of large systems sizes. As an example for a non-Markovian type of interaction, the generation of highly unusual steady states in the many-body system with coherent feedback control is demonstrated for a chain length of N=30.


2019 ◽  
Vol 10 (1) ◽  
pp. 337-356 ◽  
Author(s):  
Zi-Xiang Li ◽  
Hong Yao

Reliable simulations of correlated quantum systems, including high-temperature superconductors and frustrated magnets, are increasingly desired nowadays to further our understanding of essential features in such systems. Quantum Monte Carlo (QMC) is a unique numerically exact and intrinsically unbiased method to simulate interacting quantum many-body systems. More importantly, when QMC simulations are free from the notorious fermion sign problem, they can reliably simulate interacting quantum models with large system size and low temperature to reveal low-energy physics such as spontaneously broken symmetries and universal quantum critical behaviors. Here, we concisely review recent progress made in developing new sign-problem-free QMC algorithms, including those employing Majorana representation and those utilizing hot-spot physics. We also discuss applications of these novel sign-problem-free QMC algorithms in simulations of various interesting quantum many-body models. Finally, we discuss possible future directions of designing sign-problem-free QMC methods.


2019 ◽  
Vol 4 (4) ◽  
pp. 93
Author(s):  
Fabio Cinti ◽  
Tommaso Macrì

We analyze the many-body phases of an ensemble of particles interacting via a Lifshitz–Petrich–Gaussian pair potential in a harmonic confinement. We focus on specific parameter regimes where we expect decagonal quasiperiodic cluster arrangements. Performing classical Monte Carlo as well as path integral quantum Monte Carlo methods, we numerically simulate systems of a few thousand particles including thermal and quantum fluctuations. Our findings indicate that the competition between the intrinsic length scale of the harmonic oscillator and the wavelengths associated to the minima of the pair potential generically lead to a destruction of the quasicrystalline pattern. Extensions of this work are also discussed.


2008 ◽  
Vol 22 (06) ◽  
pp. 561-581 ◽  
Author(s):  
SHI-LIANG ZHU

Quantum phase transition is one of the main interests in the field of condensed matter physics, while geometric phase is a fundamental concept and has attracted considerable interest in the field of quantum mechanics. However, no relevant relation was recognized before recent work. In this paper, we present a review of the connection recently established between these two interesting fields: investigations in the geometric phase of the many-body systems have revealed the so-called "criticality of geometric phase", in which the geometric phase associated with the many-body ground state exhibits universality, or scaling behavior in the vicinity of the critical point. In addition, we address the recent advances on the connection of some other geometric quantities and quantum phase transitions. The closed relation recently recognized between quantum phase transitions and some of the geometric quantities may open attractive avenues and fruitful dialogue between different scientific communities.


Sign in / Sign up

Export Citation Format

Share Document