Competitive diffusion in online social networks with heterogeneous users

2014 ◽  
Vol 28 (22) ◽  
pp. 1450147 ◽  
Author(s):  
Pei Li ◽  
Su He ◽  
Hui Wang ◽  
Xin Zhang

Online social networks have attracted increasing attention since they provide various approaches for hundreds of millions of people to stay connected with their friends. However, most research on diffusion dynamics in epidemiology cannot be applied directly to characterize online social networks, where users are heterogeneous and may act differently according to their standpoints. In this paper, we propose models to characterize the competitive diffusion in online social networks with heterogeneous users. We classify messages into two types (i.e., positive and negative) and users into three types (i.e., positive, negative and neutral). We estimate the positive (negative) influence for a user generating a given type message, which is the number of times that positive (negative) messages are processed (i.e., read) incurred by this action. We then consider the diffusion threshold, above which the corresponding influence will approach infinity, and the effect threshold, above which the unexpected influence of generating a message will exceed the expected one. We verify all these results by simulations, which show the analysis results are perfectly consistent with the simulation results. These results are of importance in understanding the diffusion dynamics in online social networks, and also critical for advertisers in viral marketing where there are fans, haters and neutrals.

2015 ◽  
Vol 29 (13) ◽  
pp. 1550063 ◽  
Author(s):  
Pei Li ◽  
Yini Zhang ◽  
Fengcai Qiao ◽  
Hui Wang

Nowadays, due to the word-of-mouth effect, online social networks have been considered to be efficient approaches to conduct viral marketing, which makes it of great importance to understand the diffusion dynamics in online social networks. However, most research on diffusion dynamics in epidemiology and existing social networks cannot be applied directly to characterize online social networks. In this paper, we propose models to characterize the information diffusion in structured online social networks with push-based forwarding mechanism. We introduce the term user influence to characterize the average number of times that messages are browsed which is incurred by a given type user generating a message, and study the diffusion threshold, above which the user influence of generating a message will approach infinity. We conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of use in understanding the diffusion dynamics in online social networks and also critical for advertisers in viral marketing who want to estimate the user influence before posting an advertisement.


2020 ◽  
Vol 34 (10) ◽  
pp. 13730-13731
Author(s):  
Ece C. Mutlu

This doctoral consortium presents an overview of my anticipated PhD dissertation which focuses on employing quantum Bayesian networks for social learning. The project, mainly, aims to expand the use of current quantum probabilistic models in human decision-making from two agents to multi-agent systems. First, I cultivate the classical Bayesian networks which are used to understand information diffusion through human interaction on online social networks (OSNs) by taking into account the relevance of multitude of social, psychological, behavioral and cognitive factors influencing the process of information transmission. Since quantum like models require quantum probability amplitudes, the complexity will be exponentially increased with increasing uncertainty in the complex system. Therefore, the research will be followed by a study on optimization of heuristics. Here, I suggest to use an belief entropy based heuristic approach. This research is an interdisciplinary research which is related with the branches of complex systems, quantum physics, network science, information theory, cognitive science and mathematics. Therefore, findings can contribute significantly to the areas related mainly with social learning behavior of people, and also to the aforementioned branches of complex systems. In addition, understanding the interactions in complex systems might be more viable via the findings of this research since probabilistic approaches are not only used for predictive purposes but also for explanatory aims.


Algorithms ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 32 ◽  
Author(s):  
Miriam Di Ianni ◽  
Giovanna Varricchio

It is well-documented that social networks play a considerable role in information spreading. The dynamic processes governing the diffusion of information have been studied in many fields, including epidemiology, sociology, economics, and computer science. A widely studied problem in the area of viral marketing is the target set selection: in order to market a new product, hoping it will be adopted by a large fraction of individuals in the network, which set of individuals should we “target” (for instance, by offering them free samples of the product)? In this paper, we introduce a diffusion model in which some of the neighbors of a node have a negative influence on that node, namely, they induce the node to reject the feature that is supposed to be spread. We study the target set selection problem within this model, first proving a strong inapproximability result holding also when the diffusion process is required to reach all the nodes in a couple of rounds. Then, we consider a set of restrictions under which the problem is approximable to some extent.


2014 ◽  
Vol 28 (03) ◽  
pp. 1450004 ◽  
Author(s):  
PEI LI ◽  
YUNCHUAN SUN ◽  
YINGWEN CHEN ◽  
ZHI TIAN

Online social networks have attracted remarkable attention since they provide various approaches for hundreds of millions of people to stay connected with their friends. Due to the existence of information overload, the research on diffusion dynamics in epidemiology cannot be adopted directly to that in online social networks. In this paper, we consider diffusion dynamics in online social networks subject to information overload, and model the information-processing process of a user by a queue with a batch arrival and a finite buffer. We use the average number of times a message is processed after it is generated by a given user to characterize the user influence, which is then estimated through theoretical analysis for a given network. We validate the accuracy of our estimation by simulations, and apply the results to study the impacts of different factors on the user influence. Among the observations, we find that the impact of network size on the user influence is marginal while the user influence decreases with assortativity due to information overload, which is particularly interesting.


Author(s):  
Yifeng Zhang ◽  
Xiaoqing Li ◽  
Te-Wei Wang

Online social networks (OSNs) are quickly becoming a key component of the Internet. With their widespread acceptance among the general public and the tremendous amount time that users spend on them, OSNs provide great potentials for marketing, especially viral marketing, in which marketing messages are spread among consumers via the word-of-mouth process. A critical task in viral marketing is influencer identification, i.e. finding a group of consumers as the initial receivers of a marketing message. Using agent-based modeling, this paper examines the effectiveness of tie strength as a criterion for influencer identification on OSNs. Results show that identifying influencers by the number of strong connections that a user has is superior to doing so by the total number of connections when the strength of strong connections is relatively high compared to that of weak connections or there is a relatively high percentage of strong connections between users. Implications of the results are discussed.


Author(s):  
Bernardo Huberman ◽  
Daniel M Romero ◽  
Fang Wu

Scholars, advertisers and political activists see massive online social networks as a representation of social interactions that can be used to study the propagation of ideas, social bond dynamics and viral marketing, among others. But the linked structures of social networks do not reveal actual interactions among people. Scarcity of attention and the daily rythms of life and work makes people default to interacting with those few that matter and that reciprocate their attention. A study of social interactions within Twitter reveals that the driver of usage is a sparse and hidden network of connections underlying the “declared” set of friends and followers.


2018 ◽  
Vol 115 (29) ◽  
pp. 7468-7472 ◽  
Author(s):  
Yanqing Hu ◽  
Shenggong Ji ◽  
Yuliang Jin ◽  
Ling Feng ◽  
H. Eugene Stanley ◽  
...  

Measuring and optimizing the influence of nodes in big-data online social networks are important for many practical applications, such as the viral marketing and the adoption of new products. As the viral spreading on a social network is a global process, it is commonly believed that measuring the influence of nodes inevitably requires the knowledge of the entire network. Using percolation theory, we show that the spreading process displays a nucleation behavior: Once a piece of information spreads from the seeds to more than a small characteristic number of nodes, it reaches a point of no return and will quickly reach the percolation cluster, regardless of the entire network structure; otherwise the spreading will be contained locally. Thus, we find that, without the knowledge of the entire network, any node’s global influence can be accurately measured using this characteristic number, which is independent of the network size. This motivates an efficient algorithm with constant time complexity on the long-standing problem of best seed spreaders selection, with performance remarkably close to the true optimum.


Sign in / Sign up

Export Citation Format

Share Document