Stochastic Bose superfluid

2015 ◽  
Vol 29 (07) ◽  
pp. 1550044 ◽  
Author(s):  
Jan Maćkowiak

The ideas of Mitus et al. are exploited to define the liquid state as a state of matter, in which particles perform locally ordered motion. The presence of the liquid phase is accounted for by a stochastic term in the Hamiltonian, which simulates this property of a liquid. The Bogoliubov–Lee–Huang theory of He II, recently modified by use of effective temperature scale and more stringent reduction procedure (DHSET theory) is extended, by incorporating this term into the 4 He Hamiltonian. The resulting thermodynamics accounts for effects, which are beyond the scope of other He I and He II theories, e.g., the atomic momentum distribution and excitation spectrum have the form of diffused bands, similarly as in He II; the He I, theoretical heat capacity CV(T) is a convex function, with a minimum at T min > Tλ, which qualitatively simulates experimental He I heat capacity. Other thermodynamic functions are similar to those of DHSET theory.

2017 ◽  
Vol 24 (02) ◽  
pp. 1750009 ◽  
Author(s):  
Jan Maćkowiak

The Bogoliubov-Lee-Huang theory of superfluid 4He is modified by introducing an effective temperature scale (which accounts for the deep well of the interatomic potential) and by incorporating into the Hamiltonian a stochastic term Vl, which simulates liquidity of HeI and liquidity of the normal and superfluid component of HeII. Vl depends on two independent random angles αn, αs ∈ [0, π], which characterize the locally ordered motion of the two fluids (the normal fluid and superfluid) comprising HeII. The resulting thermodynamics improves the thermodynamic functions and excitation spectrum Ep(αn, αs) of the superfluid phase, obtained previously, leaving the heat capacity CV (T) of the normal phase, with a minimum at Tmin > 2.17K, unchanged. The theoretical velocity of sound in HeII, equal to the initial slope of Ep(π, π), agrees with experiment.


Universe ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 17
Author(s):  
Nils Andersson

As mature neutron stars are cold (on the relevant temperature scale), one has to carefully consider the state of matter in their interior. The outer kilometre or so is expected to freeze to form an elastic crust of increasingly neutron-rich nuclei, coexisting with a superfluid neutron component, while the star’s fluid core contains a mixed superfluid/superconductor. The dynamics of the star depend heavily on the parameters associated with the different phases. The presence of superfluidity brings new degrees of freedom—in essence we are dealing with a complex multi-fluid system—and additional features: bulk rotation is supported by a dense array of quantised vortices, which introduce dissipation via mutual friction, and the motion of the superfluid is affected by the so-called entrainment effect. This brief survey provides an introduction to—along with a commentary on our current understanding of—these dynamical aspects, paying particular attention to the role of entrainment, and outlines the impact of superfluidity on neutron-star seismology.


2020 ◽  
Vol 683 ◽  
pp. 178464
Author(s):  
Yi-jian He ◽  
Lin-feng He ◽  
Shu-peng Zheng ◽  
Guang-ming Chen

2019 ◽  
Vol 26 (02) ◽  
pp. 1950005
Author(s):  
Jan Maćkowiak

A mean-field theory is developed for a Bose liquid enclosed in a large vessel 𝒱. In accord with liquid structure concepts of Mitus et al., the liquid in 𝒱 is assumed to consist of adjacent macroscopic subregions Λk. In each subregion the bosons perform a locally ordered motion with prevailing orientation k + x, which varies randomly when passing from one subregion to another. |k| is constant, whereas temperature dependence of |x| is governed by a mean-field theory (MFT). The theory is applied to simulate HeI heat capacity CV (T) at T > Tλ = 2.17 K and CV (T) singularity at [Formula: see text]. The MFT numerical heat capacity Cn(T) = ΔE/ΔT exhibits behaviour characteristic of a singularity at [Formula: see text]: rapid increase with decreasing ΔT. Apart from [Formula: see text], good agreement of Cn(T) with CV(T) experimental plot is also found above Tλ, at T ∊ (Tλ, 3K].


1998 ◽  
Vol 57 (22) ◽  
pp. 14381-14386 ◽  
Author(s):  
C. Bäuerle ◽  
Yu. M. Bunkov ◽  
S. N. Fisher ◽  
H. Godfrin

2014 ◽  
Vol 376 ◽  
pp. 64-68 ◽  
Author(s):  
Neng Gao ◽  
Yunyun Jiang ◽  
Jie Wu ◽  
Yijian He ◽  
Guangming Chen

Sign in / Sign up

Export Citation Format

Share Document