Considerable improvement of entanglement swapping by considering multiphoton transitions via cavity quantum electrodynamics method

2018 ◽  
Vol 32 (08) ◽  
pp. 1850093 ◽  
Author(s):  
R. Pakniat ◽  
M. Soltani ◽  
M. K. Tavassoly

Recently we studied the effect of photon addition in the initial coherent field on the entanglement swapping which causes some improvements in the process [Soltani et al., Int. J. Mod. Phys. B 31, 1750198 (2017)]. In this paper, we investigate the influence of multiphoton transitions in the atom–field interaction based on the cavity quantum electrodynamics on the entanglement swapping and show its considerable constructive effect on this process. The presented model consists of two two-level atoms namely A1 and A2 and two distinct cavity fields F1 and F2. Initially, the atoms are prepared in a maximally entangled state and the fields in the cavities are prepared in hybrid entangled state of number and coherent states, separately. Making the atom A2 to interact with the field F1 (via the generalized Jaynes–Cummings model which allows m-photon transitions between atomic levels in the emission and absorption processes) followed by their detection allows us to arrive at the entanglement swapping from the two atoms A1, A2 and the two fields F1, F2 to the atom–field A1–F2 system. Then, we pay our attention to the time evolution of success probability of detecting processes and fidelity. Also, to determine the amount of entanglement of the generated entangled state in the swapping process, the linear entropy is evaluated and the effect of parameter [Formula: see text] concerning the multiphoton transitions on these quantities is investigated, numerically. It is observed that, by increasing the number of photons in the transition process, one may obtain considerable improvement in the relevant quantities of the entanglement swapping. In detail, the satisfactorily acceptable values 1 and 0.5 corresponding to success probability and fidelity are obtained for most of the times during observing of the above-mentioned procedure. We concluded that the presented formalism in this paper is much more advantageous than our presentation model in our earlier work mentioned above.

2017 ◽  
Vol 31 (27) ◽  
pp. 1750198 ◽  
Author(s):  
M. Soltani ◽  
M. K. Tavassoly ◽  
R. Pakniat

In this paper, we outline a scheme for the entanglement swapping procedure based on cavity quantum electrodynamics using the Jaynes–Cummings model consisting of the coherent and photon-added coherent states. In particular, utilizing the photon-added coherent states ([Formula: see text][Formula: see text][Formula: see text][Formula: see text], where [Formula: see text] is the Glauber coherent state) in the scheme, enables us to investigate the effect of [Formula: see text], i.e., the number of excitations corresponding to the photon-added coherent field on the entanglement swapping process. In the scheme, two two-level atoms [Formula: see text] and [Formula: see text] are initially entangled together, and distinctly two exploited cavity fields [Formula: see text] and [Formula: see text] are prepared in an entangled state (a combination of coherent and photon-added coherent states). Interacting the atom [Formula: see text] with field [Formula: see text] (via the Jaynes–Cummings model) and then making detection on them, transfers the entanglement from the two atoms [Formula: see text], [Formula: see text] and the two fields [Formula: see text], [Formula: see text] to the atom-field “[Formula: see text]-[Formula: see text]”, i.e., entanglement swapping occurs. In the continuation, we pay our attention to the evaluation of the fidelity of the swapped entangled state relative to a suitable maximally entangled state, success probability of the performed detections and linear entropy as the degree of entanglement of the swapped entangled state. It is demonstrated that, an increase in the number of excitations, [Formula: see text], leads to the increment of fidelity as well as the amount of entanglement. According to our numerical results, the maximum values of fidelity (linear entropy) 0.98 (0.46) is obtained for [Formula: see text], however, the maximum value of success probability does not significantly change by increasing [Formula: see text].


2007 ◽  
Vol 05 (05) ◽  
pp. 673-683 ◽  
Author(s):  
YU-LING LIU ◽  
ZHONG-XIAO MAN ◽  
YUN-JIE XIA

We explicitly present two schemes for quantum teleportation of an arbitrary N-qubit entangled state using, respectively, non-maximally entangled Bell states and GHZ states as the quantum channels, and generalized Bell states as the measurement basis. The scheme succeeds with unit fidelity but less than unit probability. By introducing additional qubit and unitary operations, the success probability of these two schemes can be increased.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Guillermo García-Pérez ◽  
Matteo A. C. Rossi ◽  
Sabrina Maniscalco

AbstractThe advent of noisy intermediate-scale quantum (NISQ) technology is changing rapidly the landscape and modality of research in quantum physics. NISQ devices, such as the IBM Q Experience, have very recently proven their capability as experimental platforms accessible to everyone around the globe. Until now, IBM Q Experience processors have mostly been used for quantum computation and simulation of closed systems. Here, we show that these devices are also able to implement a great variety of paradigmatic open quantum systems models, hence providing a robust and flexible testbed for open quantum systems theory. During the last decade an increasing number of experiments have successfully tackled the task of simulating open quantum systems in different platforms, from linear optics to trapped ions, from nuclear magnetic resonance (NMR) to cavity quantum electrodynamics. Generally, each individual experiment demonstrates a specific open quantum system model, or at most a specific class. Our main result is to prove the great versatility of the IBM Q Experience processors. Indeed, we experimentally implement one and two-qubit open quantum systems, both unital and non-unital dynamics, Markovian and non-Markovian evolutions. Moreover, we realise proof-of-principle reservoir engineering for entangled state generation, demonstrate collisional models, and verify revivals of quantum channel capacity and extractable work, caused by memory effects. All these results are obtained using IBM Q Experience processors publicly available and remotely accessible online.


2014 ◽  
Vol 12 (03) ◽  
pp. 1450011 ◽  
Author(s):  
Pengfei Xing ◽  
Yimin Liu ◽  
Chuanmei Xie ◽  
Xiansong Liu ◽  
Zhanjun Zhang

Two three-party schemes are put forward for sharing quantum operations on a remote qutrit with local operation and classical communication as well as shared entanglements. The first scheme uses a two-qutrit and three-qutrit non-maximally entangled states as quantum channels, while the second replaces the three-qutrit non-maximally entangled state with a two-qutrit. Both schemes are treated and compared from the four aspects of quantum and classical resource consumption, necessary-operation complexity, success probability and efficiency. It is found that the latter is overall more optimal than the former as far as a restricted set of operations is concerned. In addition, comparisons of both schemes with other four relevant ones are also made to show their two features, including degree generalization and channel-state generalization. Furthermore, some concrete discussions on both schemes are made to expose their important features of security, symmetry and experimental feasibility. Particularly, it is revealed that the success probabilities and intrinsic efficiencies in both schemes are completely determined by the shared entanglement.


2018 ◽  
Vol 8 (10) ◽  
pp. 1935
Author(s):  
Mihai-Zicu Mina ◽  
Pantelimon Popescu

In the practical context of quantum networks, the most reliable method of transmitting quantum information is via teleportation because quantum states are highly sensitive. However, teleportation consumes a shared maximally entangled state. Two parties Alice and Bob located at separate nodes that wish to reestablish their shared entanglement will not send entangled qubits directly to achieve this goal, but rather employ a more efficient mechanism that ensures minimal time resources. In this paper, we present a quantum routing scheme that exploits entanglement swapping to reestablish consumed entanglement. It improves and generalizes previous work on the subject and reduces the entanglement distribution time by a factor of 4 k in an arbitrary scale quantum network, where N = 4 k - 1 is a required number of quantum nodes located between source and destination. In addition, k is the greatest positive integer considered by Alice or Bob, such that afterwards they choose N quantum switches.


Author(s):  
Ryan C. Parker ◽  
Jaewoo Joo ◽  
Timothy P. Spiller

We propose the use of hybrid entanglement in an entanglement swapping protocol, as means of distributing a Bell state with high fidelity to two parties. The hybrid entanglement used in this work is described as a discrete variable (Fock state) and a continuous variable (cat state super- position) entangled state. We model equal and unequal levels of photonic loss between the two propagating continuous variable modes, before detecting these states via a projective vacuum-one-photon measurement, and the other mode via balanced homodyne detection. We investigate homodyne measurement imperfections, and the associated success probability of the measurement schemes chosen in this protocol. We show that our entanglement swapping scheme is resilient to low levels of photonic losses, as well as low levels of averaged unequal losses between the two propagating modes, and show an improvement in this loss resilience over other hybrid entanglement schemes using coherent state superpositions as the propagating modes. Finally, we conclude that our protocol is suitable for potential quantum networking applications which require two nodes to share entanglement separated over a distance of 5 -- 10   km , when used with a suitable entanglement purification scheme.


Sign in / Sign up

Export Citation Format

Share Document