Investigation of the photovoltaic performance of n-Zno/n-CdS/p-Cu2ZnSnS4 solar cell

2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040010
Author(s):  
Xin-Yao Zou

The semiconducting thin film solar cell based on Cu2ZnSnS4 (CZTS) materials is considered as a promising candidate for very large-scale application due to high absorption coefficient and low cost. In this study, the performances of n-ZnO/n-CdS/p-CZTS solar cells were numerically simulated using the AFORS-HET software. The influences of double-graded bandgap and thickness of CZTS layer on the performances of the solar cell were investigated. The calculated results show that double-graded bandgap structure can greatly optimize the conversion efficiency of CZTS thin film solar cell. The optimal dual gradient structure is 1.4 eV-1.3 eV-1.5 eV, the optimal thickness ratio is 11:1, and the conversion efficiency could be 26.63%. The results of this study can serve as a guide in fabricating CZTS solar cell.

2015 ◽  
Vol 7 (12) ◽  
pp. 6472-6479 ◽  
Author(s):  
Wilman Septina ◽  
Masaaki Kurihara ◽  
Shigeru Ikeda ◽  
Yasuhiro Nakajima ◽  
Toshiyuki Hirano ◽  
...  

2011 ◽  
Vol 21 (1) ◽  
pp. 72-76 ◽  
Author(s):  
Byungha Shin ◽  
Oki Gunawan ◽  
Yu Zhu ◽  
Nestor A. Bojarczuk ◽  
S. Jay Chey ◽  
...  

2013 ◽  
Vol 22 (1) ◽  
pp. 58-68 ◽  
Author(s):  
Lian Guo ◽  
Yu Zhu ◽  
Oki Gunawan ◽  
Tayfun Gokmen ◽  
Vaughn R. Deline ◽  
...  

2015 ◽  
Vol 18 (4) ◽  
pp. 225-230 ◽  
Author(s):  
N. Mendoza-Agüero ◽  
V. Agarwal ◽  
H. I. Villafán-Vidales ◽  
J. Campos-Alvarez ◽  
P. J. Sebastian

Transparent and conductive Al doped zinc oxide (AZO) films were reactively sputtered from metallic targets onto macro-porous silicon (MPS) substrate to fabricate a heterojunction interface structure. A tungsten oxide (WO3) thin film was placed between metallic aluminum back contact and bulk silicon to extract photogenerated holes from the absorber. Due to the susceptibility of PS to naturally oxidize over the period of time, a thin film of SiO2 was thermally grown to stabilize the electrical response of the junction. Such thin layer acts as passive film to prevent recombination and is placed between the p-n junction. Photovoltaic properties of this heterojunction were studied by using the current density-voltage (J-V) measurement under AM 1.5 illumination. The experimental results show an increase in photovoltaic performance of AZO/MPS solar cell with a buffer layers of WO3. Such heterostructures are promising for the development of the low-cost, clean, and durable devices with appreciable light-to-electricity conversion efficiency.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012043
Author(s):  
S S Hegde ◽  
K Ramesh

Abstract Photovoltaics (PV) have become increasingly popular and reached as the third-largest renewable energy source. Thin-film solar cells made from earth-abundant, inexpensive and environmentally friendly materials are needed to replace the current PV technologies whose large-scale applications are limited by material and/or resource constraints. Near optimum direct optical bandgap of 1.3 eV, high absorption coefficient (>104 cm−1), less toxic, and abundant raw resources along with considerable scalability have made tin sulfide (SnS) as a strategic choice for next-generation PVs. In this review, limitations of leading commercial PV technologies and the status of a few alternate low-cost PV materials are outlined. Recent literature on crucial physical properties of SnS thin-films and the present status of SnS thin-film-based solar cells are discussed. Deficiency and adequacy of some of the key properties of SnS including carrier mobility (μ), minority carrier lifetime (τ), and absorption coefficient (α) are discussed in comparison of existing commercial solar cell materials. Future research trends on SnS based solar cells to enhance their conversion efficiencies towards the theoretical maximum of 24% from present ~5% and its prospectus as next-generation solar cell is also discussed.


Sign in / Sign up

Export Citation Format

Share Document